| Exam Board | CAIE |
|---|---|
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2017 |
| Session | June |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Implicit equations and differentiation |
3 A curve $C$ has equation $\tan y = x$, for $x > 0$.\\
(i) Use implicit differentiation to show that
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - 2 x \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 }$$
(ii) Hence find the value of $\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }$ at the point $\left( 1 , \frac { 1 } { 4 } \pi \right)$ on $C$.\\
\hfill \mbox{\textit{CAIE FP1 2017 Q3}}