CAIE FP1 2017 June — Question 5

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2017
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicInvariant lines and eigenvalues and vectors

5 The matrix \(\mathbf { A }\), given by $$\mathbf { A } = \left( \begin{array} { l l l } 1 & 2 & - 2 \\ 6 & 4 & - 6 \\ 6 & 5 & - 7 \end{array} \right)$$ has eigenvalues \(1 , - 1\) and - 2 .
  1. Find a set of corresponding eigenvectors.
  2. The matrix \(\mathbf { B }\) is given by \(\mathbf { B } = \mathbf { A } - 2 \mathbf { I }\), where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. Write down the eigenvalues of \(\mathbf { B }\), and state a set of corresponding eigenvectors.

5 The matrix $\mathbf { A }$, given by

$$\mathbf { A } = \left( \begin{array} { l l l } 
1 & 2 & - 2 \\
6 & 4 & - 6 \\
6 & 5 & - 7
\end{array} \right)$$

has eigenvalues $1 , - 1$ and - 2 .\\
(i) Find a set of corresponding eigenvectors.\\

(ii) The matrix $\mathbf { B }$ is given by $\mathbf { B } = \mathbf { A } - 2 \mathbf { I }$, where $\mathbf { I }$ is the $3 \times 3$ identity matrix. Write down the eigenvalues of $\mathbf { B }$, and state a set of corresponding eigenvectors.\\

\hfill \mbox{\textit{CAIE FP1 2017 Q5}}