AQA Further AS Paper 1 2024 June — Question 15

Exam BoardAQA
ModuleFurther AS Paper 1 (Further AS Paper 1)
Year2024
SessionJune
TopicTaylor series
TypeUse series to find error or validity

15
  1. Use Maclaurin's series expansion for \(\ln ( 1 + x )\) to show that the first three terms of the Maclaurin's series expansion of \(\ln ( 1 + 3 x )\) are $$3 x - \frac { 9 } { 2 } x ^ { 2 } + 9 x ^ { 3 }$$ 15
  2. Julia attempts to use the series expansion found in part (a) to find an approximation for \(\ln 4\) Julia's incorrect working is shown below. $$\begin{array} { r } \text { Let } 1 + 3 x = 4
    3 x = 3
    x = 1 \end{array}$$ $$\text { So } \begin{aligned} \ln 4 & \approx 3 \times 1 - \frac { 9 } { 2 } \times 1 ^ { 2 } + 9 \times 1 ^ { 3 }
    & \approx 3 - 4.5 + 9
    & \approx 7.5 \end{aligned}$$ Explain the error in Julia's working.
    15
  3. Use \(x = - \frac { 1 } { 6 }\) in the series expansion found in part (a) to find an approximation for \(\ln 4\) Fully justify your answer.