AQA D2 2012 June — Question 3

Exam BoardAQA
ModuleD2 (Decision Mathematics 2)
Year2012
SessionJune
TopicThe Simplex Algorithm

3
  1. Given that \(k\) is a constant, complete the Simplex tableau below for the following linear programming problem. Maximise $$P = k x + 6 y + 5 z$$ subject to $$\begin{gathered} 2 x + y + 4 z \leqslant 11
    x + 3 y + 6 z \leqslant 18
    x \geqslant 0 , y \geqslant 0 , z \geqslant 0 \end{gathered}$$
  2. Use the Simplex method to perform one iteration of your tableau for part (a), choosing a value in the \(\boldsymbol { y }\)-column as pivot.
    1. In the case when \(k = 1\), explain why the maximum value of \(P\) has now been reached and write down this maximum value of \(P\).
    2. In the case when \(k = 3\), perform one further iteration and interpret your new tableau. \section*{Answer space for question 3}
  3. \(\boldsymbol { P }\)\(\boldsymbol { x }\)\(\boldsymbol { y }\)\(\boldsymbol { Z }\)\(s\)\(\boldsymbol { t }\)value
    1\(- k\)-6-5000
    0
    0
  4. \(\boldsymbol { P }\)\(\boldsymbol { x }\)\(\boldsymbol { y }\)\(\boldsymbol { Z }\)\(\boldsymbol { s }\)\(\boldsymbol { t }\)value
    \section*{Answer space for question 3}
    1. \(\_\_\_\_\)