AQA D2 2012 June — Question 1

Exam BoardAQA
ModuleD2 (Decision Mathematics 2)
Year2012
SessionJune
TopicCritical Path Analysis

1
Figure 1 below shows an activity diagram for a construction project. The time needed for each activity is given in days.
  1. Find the earliest start time and the latest finish time for each activity and insert their values on Figure 1.
  2. Find the critical paths and state the minimum time for completion of the project.
  3. On Figure 2 opposite, draw a cascade diagram (Gantt chart) for the project, assuming that each activity starts as early as possible.
  4. Activity \(J\) takes longer than expected so that its duration is \(x\) days, where \(x \geqslant 3\). Given that the minimum time for completion of the project is unchanged, find a further inequality relating to the maximum value of \(x\).
  5. \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{d0902228-7041-4449-9ccb-770352ce6bef-02_910_1355_1414_411}
    \end{figure}
  6. Critical paths are \(\_\_\_\_\)
    Minimum completion time is \(\_\_\_\_\) days. \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{d0902228-7041-4449-9ccb-770352ce6bef-03_940_1160_390_520}
    \end{figure}
  7. \(\_\_\_\_\)