CAIE P3 2013 November — Question 8

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2013
SessionNovember
TopicComplex Numbers Arithmetic
TypeSimultaneous equations with complex numbers

8 Throughout this question the use of a calculator is not permitted.
  1. The complex numbers \(u\) and \(v\) satisfy the equations $$u + 2 v = 2 \mathrm { i } \quad \text { and } \quad \mathrm { i } u + v = 3$$ Solve the equations for \(u\) and \(v\), giving both answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
  2. On an Argand diagram, sketch the locus representing complex numbers \(z\) satisfying \(| z + \mathrm { i } | = 1\) and the locus representing complex numbers \(w\) satisfying \(\arg ( w - 2 ) = \frac { 3 } { 4 } \pi\). Find the least value of \(| z - w |\) for points on these loci.