CAIE P3 2013 November — Question 10

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2013
SessionNovember
TopicDifferential equations

10
\includegraphics[max width=\textwidth, alt={}, center]{dd7b2aee-4318-48e8-97c0-541e47f2e83a-4_335_875_262_635} A tank containing water is in the form of a cone with vertex \(C\). The axis is vertical and the semivertical angle is \(60 ^ { \circ }\), as shown in the diagram. At time \(t = 0\), the tank is full and the depth of water is \(H\). At this instant, a tap at \(C\) is opened and water begins to flow out. The volume of water in the tank decreases at a rate proportional to \(\sqrt { } h\), where \(h\) is the depth of water at time \(t\). The tank becomes empty when \(t = 60\).
  1. Show that \(h\) and \(t\) satisfy a differential equation of the form $$\frac { \mathrm { d } h } { \mathrm {~d} t } = - A h ^ { - \frac { 3 } { 2 } } ,$$ where \(A\) is a positive constant.
  2. Solve the differential equation given in part (i) and obtain an expression for \(t\) in terms of \(h\) and \(H\).
  3. Find the time at which the depth reaches \(\frac { 1 } { 2 } H\).
    [0pt] [The volume \(V\) of a cone of vertical height \(h\) and base radius \(r\) is given by \(V = \frac { 1 } { 3 } \pi r ^ { 2 } h\).]