Simultaneous equations with complex numbers

A question is this type if and only if it asks to solve a system of two or more equations involving complex variables, typically by substitution or elimination.

5 questions

CAIE P3 2020 June Q9
9
  1. The complex numbers \(u\) and \(w\) are such that $$u - w = 2 \mathrm { i } \quad \text { and } \quad u w = 6$$ Find \(u\) and \(w\), giving your answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real and exact.
  2. On a sketch of an Argand diagram, shade the region whose points represent complex numbers \(z\) satisfying the inequalities $$| z - 2 - 2 \mathbf { i } | \leqslant 2 , \quad 0 \leqslant \arg z \leqslant \frac { 1 } { 4 } \pi \quad \text { and } \quad \operatorname { Re } z \leqslant 3$$
    \includegraphics[max width=\textwidth, alt={}]{c1bd46f8-a33a-4927-af59-718b1c9dd4e1-16_462_709_260_719}
    A tank containing water is in the form of a hemisphere. The axis is vertical, the lowest point is \(A\) and the radius is \(r\), as shown in the diagram. The depth of water at time \(t\) is \(h\). At time \(t = 0\) the tank is full and the depth of the water is \(r\). At this instant a tap at \(A\) is opened and water begins to flow out at a rate proportional to \(\sqrt { h }\). The tank becomes empty at time \(t = 14\). The volume of water in the tank is \(V\) when the depth is \(h\). It is given that \(V = \frac { 1 } { 3 } \pi \left( 3 r h ^ { 2 } - h ^ { 3 } \right)\).
  3. Show that \(h\) and \(t\) satisfy a differential equation of the form $$\frac { \mathrm { d } h } { \mathrm {~d} t } = - \frac { B } { 2 r h ^ { \frac { 1 } { 2 } } - h ^ { \frac { 3 } { 2 } } } ,$$ where \(B\) is a positive constant.
  4. Solve the differential equation and obtain an expression for \(t\) in terms of \(h\) and \(r\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P3 2020 March Q10
10
  1. The complex numbers \(v\) and \(w\) satisfy the equations $$v + \mathrm { i } w = 5 \quad \text { and } \quad ( 1 + 2 \mathrm { i } ) v - w = 3 \mathrm { i } .$$ Solve the equations for \(v\) and \(w\), giving your answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
    1. On an Argand diagram, sketch the locus of points representing complex numbers \(z\) satisfying \(| z - 2 - 3 \mathrm { i } | = 1\).
    2. Calculate the least value of \(\arg z\) for points on this locus.
      If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
OCR Further Pure Core 2 2023 June Q2
2 In this question you must show detailed reasoning.
  1. Write the complex number \(- 24 + 7 \mathrm { i }\) in modulus-argument form.
  2. Solve the simultaneous equations given below, giving your answers in cartesian form. $$\begin{aligned} i z + 3 w & = - 7 i
    - 6 z + 5 i w & = 3 + 13 i \end{aligned}$$
CAIE P3 2013 November Q7
  1. The complex numbers \(u\) and \(v\) satisfy the equations $$u + 2 v = 2 \mathrm { i } \quad \text { and } \quad \mathrm { i } u + v = 3$$ Solve the equations for \(u\) and \(v\), giving both answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
  2. On an Argand diagram, sketch the locus representing complex numbers \(z\) satisfying \(| z + \mathrm { i } | = 1\) and the locus representing complex numbers \(w\) satisfying \(\arg ( w - 2 ) = \frac { 3 } { 4 } \pi\). Find the least value of \(| z - w |\) for points on these loci.
CAIE P3 2013 November Q8
8 Throughout this question the use of a calculator is not permitted.
  1. The complex numbers \(u\) and \(v\) satisfy the equations $$u + 2 v = 2 \mathrm { i } \quad \text { and } \quad \mathrm { i } u + v = 3$$ Solve the equations for \(u\) and \(v\), giving both answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
  2. On an Argand diagram, sketch the locus representing complex numbers \(z\) satisfying \(| z + \mathrm { i } | = 1\) and the locus representing complex numbers \(w\) satisfying \(\arg ( w - 2 ) = \frac { 3 } { 4 } \pi\). Find the least value of \(| z - w |\) for points on these loci.