A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q5
CAIE P3 2013 November — Question 5
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2013
Session
November
Topic
Reciprocal Trig & Identities
5
Prove that \(\cot \theta + \tan \theta \equiv 2 \operatorname { cosec } 2 \theta\).
Hence show that \(\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 3 } \pi } \operatorname { cosec } 2 \theta \mathrm {~d} \theta = \frac { 1 } { 2 } \ln 3\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10