The complex numbers \(u\) and \(v\) satisfy the equations
$$u + 2 v = 2 \mathrm { i } \quad \text { and } \quad \mathrm { i } u + v = 3$$
Solve the equations for \(u\) and \(v\), giving both answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
On an Argand diagram, sketch the locus representing complex numbers \(z\) satisfying \(| z + \mathrm { i } | = 1\) and the locus representing complex numbers \(w\) satisfying \(\arg ( w - 2 ) = \frac { 3 } { 4 } \pi\). Find the least value of \(| z - w |\) for points on these loci.