A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure and Mechanics
Differentiation Applications
Q6
Edexcel AEA 2007 June — Question 6
Exam Board
Edexcel
Module
AEA (Advanced Extension Award)
Year
2007
Session
June
Topic
Differentiation Applications
Type
Optimization with constraints
Find an expression, in terms of \(x\), for the area \(A\) of \(R\).
Show that \(\frac { \mathrm { d } A } { \mathrm {~d} x } = \frac { 1 } { 4 } ( \pi - 2 x - 2 \sin x ) \sec ^ { 2 } \frac { x } { 2 }\).
Prove that the maximum value of \(A\) occurs when \(\frac { \pi } { 4 } < x < \frac { \pi } { 3 }\).
Prove that \(\tan \frac { \pi } { 8 } = \sqrt { } 2 - 1\).
Show that the maximum value of \(A > \frac { \pi } { 4 } ( \sqrt { } 2 - 1 )\).
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7