Edexcel AEA 2007 June — Question 6

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2007
SessionJune
TopicDifferentiation Applications
TypeOptimization with constraints

  1. Find an expression, in terms of \(x\), for the area \(A\) of \(R\).
  2. Show that \(\frac { \mathrm { d } A } { \mathrm {~d} x } = \frac { 1 } { 4 } ( \pi - 2 x - 2 \sin x ) \sec ^ { 2 } \frac { x } { 2 }\).
  3. Prove that the maximum value of \(A\) occurs when \(\frac { \pi } { 4 } < x < \frac { \pi } { 3 }\).
  4. Prove that \(\tan \frac { \pi } { 8 } = \sqrt { } 2 - 1\).
  5. Show that the maximum value of \(A > \frac { \pi } { 4 } ( \sqrt { } 2 - 1 )\).