OCR MEI Further Numerical Methods 2023 June — Question 4

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2023
SessionJune
TopicSign Change & Interval Methods
TypeSimpson's Rule Approximation

4 A spreadsheet is used to approximate \(\int _ { a } ^ { b } f ( x ) d x\) using the midpoint rule with 1 strip. The output is shown in the table below.
BCD
3\(x\)\(\mathrm { f } ( x )\)\(\mathrm { M } _ { 1 }\)
41.51.31037070.65518535
The formula in cell C4 is \(= \mathrm { B } 4 \wedge ( 1 / \mathrm { B } 4 )\).
The formula in cell D4 is \(= 0.5 ^ { * } \mathrm { C } 4\).
  1. Write the integral in standard mathematical notation. A graph of \(y = f ( x )\) is included in the diagram below.
    \includegraphics[max width=\textwidth, alt={}, center]{4023e87c-34b1-4abd-9acc-ede5e4d68c7f-04_789_1004_1199_235}
  2. Explain whether 0.65518535 is an over-estimate or an under-estimate of \(\int _ { a } ^ { b } f ( x ) d x\).