OCR MEI Further Numerical Methods 2023 June — Question 9

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2023
SessionJune
TopicSign Change & Interval Methods
TypeTrapezium Rule with Accuracy Analysis

9 The trapezium rule is used to calculate 3 approximations to \(\int _ { 0 } ^ { 1 } \sqrt [ 3 ] { \sinh ( x ) } \mathrm { d } x\) with 1,2 and 4 strips respectively. The results are shown in Table 9.1. \begin{table}[h]
\captionsetup{labelformat=empty} \caption{Table 9.1}
\(n\)\(\mathrm {~T} _ { n }\)
10.52764369
20.66617652
40.72534275
\end{table}
  1. Use these results to determine two approximations to \(\int _ { 0 } ^ { 1 } \sqrt [ 3 ] { \sinh ( x ) } \mathrm { d } x\) using Simpson's rule.
  2. Use your answers to part (a) to state the value of \(\int _ { 0 } ^ { 1 } \sqrt [ 3 ] { \sinh ( x ) } \mathrm { d } x\) as accurately as you can, justifying the precision quoted. Table 9.2 shows some further approximations found using the trapezium rule, together with some analysis of these approximations. \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Table 9.2}
    \(n\)\(\mathrm { T } _ { n }\)differenceratio
    10.5276437
    20.66617650.138533
    40.72534270.0591660.42709
    80.74988210.0245390.41475
    160.75988580.0100040.40766
    320.76392210.0040360.40348
    640.76554040.0016180.40095
    \end{table}
  3. Explain what can be deduced about the order of the method in this case.
  4. Use extrapolation to obtain the value of \(\int _ { 0 } ^ { 1 } \sqrt [ 3 ] { \sinh ( x ) } \mathrm { d } x\) as accurately as you can, justifying the precision quoted.