OCR MEI Further Numerical Methods 2023 June — Question 7

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2023
SessionJune
TopicSign Change & Interval Methods
TypeNumerical Differentiation Estimates

7 The value of a function, \(\mathrm { y } = \mathrm { f } ( \mathrm { x } )\), and its gradient function, \(\frac { \mathrm { dy } } { \mathrm { dx } }\), when \(x = 2\), is given in Table 7.1. \begin{table}[h]
\captionsetup{labelformat=empty} \caption{Table 7.1}
\(x\)\(\mathrm { f } ( x )\)\(\frac { \mathrm { dy } } { \mathrm { dx } }\)
26- 2.8
\end{table}
  1. Determine the approximate value of the error when \(f ( 2 )\) is used to estimate \(f ( 2.03 )\). The Newton-Raphson method is used to find a sequence of approximations to a root, \(\alpha\), of the equation \(\mathrm { f } ( x ) = 0\). The spreadsheet output showing the iterates, together with some further analysis, is shown in Table 7.2. \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Table 7.2}
    ABCD
    1rXrdifferenceratio
    2012
    31-13.1165572-25.1165572
    421.7628327914.87939004-0.5924136
    532.180521570.417688780.02807163
    642.1824190240.0018974540.00454275
    752.182419066\(4.13985 \mathrm { E } - 08\)\(2.1818 \mathrm { E } - 05\)
    \end{table}
    1. Explain what the values in column D tell you about the order of convergence of this sequence of approximations.
    2. Without doing any further calculation, state the value of \(\alpha\) as accurately as you can, justifying the precision quoted.