OCR MEI Further Numerical Methods 2023 June — Question 3

Exam BoardOCR MEI
ModuleFurther Numerical Methods (Further Numerical Methods)
Year2023
SessionJune
TopicSign Change & Interval Methods
TypeNumerical Differentiation Estimates

3 The diagram shows the graph of \(y = f ( x )\) for values of \(x\) from 1 to 3.5.
\includegraphics[max width=\textwidth, alt={}, center]{4023e87c-34b1-4abd-9acc-ede5e4d68c7f-03_945_1248_312_244} The table shows some values of \(x\) and the associated values of \(y\).
\(x\)1.522.5
\(y\)1.6821372.0943952.318559
  1. Use the forward difference method to calculate an approximation to \(\frac { \mathrm { dy } } { \mathrm { dx } }\) at \(x = 2\).
  2. Use the central difference method to calculate an approximation to \(\frac { \mathrm { dy } } { \mathrm { dx } }\) at \(x = 2\).
  3. On the copy of the diagram in the Printed Answer Booklet, show how the central difference method gives the approximation to \(\frac { \mathrm { dy } } { \mathrm { dx } }\) at \(x = 2\) which was found in part (b).
  4. Explain whether your answer to part (a) or your answer to part (b) is likely to give a better approximation to \(\frac { \mathrm { dy } } { \mathrm { dx } }\) at \(x = 2\).