5 The equation \(3 - 2 \ln x - x = 0\) has a root near \(x = 1.8\).
A student proposes to use the iterative formula \(\mathrm { x } _ { \mathrm { n } + 1 } = \mathrm { g } \left( \mathrm { x } _ { \mathrm { n } } \right) = 3 - 2 \ln \mathrm { x } _ { \mathrm { n } }\) to find this root.
The diagram shows the graphs of \(\mathrm { y } = \mathrm { x }\) and \(\mathrm { y } = \mathrm { g } ( \mathrm { x } )\) for values of \(x\) from - 2 to 6 .
\includegraphics[max width=\textwidth, alt={}, center]{4023e87c-34b1-4abd-9acc-ede5e4d68c7f-05_913_917_502_233}
- With reference to the graph, explain why it might not be possible to use the student's iterative formula to find the root near \(x = 1.8\).
- Use the relaxed iteration \(\mathrm { x } _ { \mathrm { n } + 1 } = \lambda \mathrm { g } \left( \mathrm { x } _ { \mathrm { n } } \right) + ( 1 - \lambda ) \mathrm { x } _ { \mathrm { n } }\), with \(\lambda = 0.475\) and \(x _ { 0 } = 2\), to determine the root correct to \(\mathbf { 6 }\) decimal places.
A student uses the same relaxed iteration with the same starting value. Some analysis of the iterates is carried out using a spreadsheet, which is shown in the table below.
| \(r\) | difference | ratio |
| 0 | | |
| 1 | - 0.1834898 | |
| 2 | - 0.0049137 | 0.02678 |
| 3 | \(- 6.44 \mathrm { E } - 06\) | 0.00131 |
| 4 | \(- 3.862 \mathrm { E } - 09\) | 0.0006 |
| 5 | \(- 2.313 \mathrm { E } - 12\) | 0.0006 |
- Explain what the analysis tells you about the order of convergence of this sequence of approximations.