| Exam Board | OCR |
| Module | PURE |
| Topic | Non-constant acceleration |
12
\includegraphics[max width=\textwidth, alt={}, center]{31b0d5b6-1593-489b-bbcd-486e7c96ff18-09_647_935_260_242}
A particle \(P\) moves in a straight line. At time \(t\) seconds, where \(t \geqslant 0\), the velocity of \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It is given that \(v = - 3 t ^ { 2 } + 24 t + k\), where \(k\) is a positive constant.
The diagram shows the velocity-time graph for the motion of \(P\).
\(P\) attains its maximum velocity at time \(T\) seconds. Given that the distance travelled by \(P\) between times \(t = 1\) and \(t = T\) is 297 m , determine the time when \(P\) is instantaneously at rest.
\section*{END OF QUESTION PAPER}