OCR PURE

Question 1
View details
1 Given that \(( x - 2 )\) is a factor of \(2 x ^ { 3 } + k x - 4\), find the value of the constant \(k\).
Question 2
View details
2
\includegraphics[max width=\textwidth, alt={}, center]{31b0d5b6-1593-489b-bbcd-486e7c96ff18-03_835_545_749_244} The diagram shows the line \(y = - 2 x + 4\) and the curve \(y = x ^ { 2 } - 4\). The region \(R\) is the unshaded region together with its boundaries. Write down the inequalities that define \(R\).
Question 3
View details
3 Sam invested in a shares scheme. The value, \(\pounds V\), of Sam's shares was reported \(t\) months after investment.
  • Exactly 6 months after investment, the value of Sam's shares was \(\pounds 2375\).
  • Exactly 1 year after investment, the value of Sam's shares was \(\pounds 2825\).
    1. Using a straight-line model, determine an equation for \(V\) in terms of \(t\).
Sam's original investment in the scheme was \(\pounds 1900\).
  • Explain whether or not this fact supports the use of the straight-line model in part (a).
  • Question 4
    View details
    4 The quadratic polynomial \(2 x ^ { 2 } - 3\) is denoted by \(\mathrm { f } ( x )\).
    Use differentiation from first principles to determine the value of \(\mathrm { f } ^ { \prime } ( 2 )\).
    Question 5
    View details
    5
    1. Show that the equation \(2 \cos x \tan ^ { 2 } x = 3 ( 1 + \cos x )\) can be expressed in the form $$5 \cos ^ { 2 } x + 3 \cos x - 2 = 0$$ \section*{(b) In this question you must show detailed reasoning.} Hence solve the equation $$2 \cos 3 \theta \tan ^ { 2 } 3 \theta = 3 ( 1 + \cos 3 \theta ) ,$$ giving all values of \(\theta\) between \(0 ^ { \circ }\) and \(120 ^ { \circ }\), correct to \(\mathbf { 1 }\) decimal place where appropriate.
    Question 6
    View details
    6 A curve \(C\) has an equation which satisfies \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 3 x ^ { 2 } + 2\), for all values of \(x\).
    1. It is given that \(C\) has a single stationary point. Determine the nature of this stationary point. The diagram shows the graph of the gradient function for \(C\).
      \includegraphics[max width=\textwidth, alt={}, center]{31b0d5b6-1593-489b-bbcd-486e7c96ff18-04_702_442_1672_242}
    2. Given that \(C\) passes through the point \(\left( - 1 , \frac { 1 } { 4 } \right)\), find the equation of \(C\) in the form \(y = \mathrm { f } ( x )\).
    Question 7
    View details
    7
    \includegraphics[max width=\textwidth, alt={}, center]{31b0d5b6-1593-489b-bbcd-486e7c96ff18-05_848_1049_260_242} The diagram shows the circle with equation \(x ^ { 2 } + y ^ { 2 } - 6 x + 9 y + 19 = 0\) and centre \(C\).
    1. Find the following.
      • The coordinates of \(C\).
      • The exact radius of the circle.
      The tangent to the circle at \(D\) meets the \(x\)-axis at the point \(A \left( \frac { 55 } { 4 } , 0 \right)\) and the \(y\)-axis at the point \(B ( 0 , - 11 )\).
    2. Determine the area of triangle \(O B D\).
    Question 8
    View details
    8
    \includegraphics[max width=\textwidth, alt={}, center]{31b0d5b6-1593-489b-bbcd-486e7c96ff18-06_823_588_260_242} The diagram shows the curve \(y = 1 - x + \frac { 6 } { \sqrt { x } }\) and the line \(l\), which is the normal to the curve at the point (1, 6).
    1. Determine the equation of \(l\) in the form $$a x + b y = c$$ where \(a\), \(b\) and \(c\) are integers whose values are to be stated.
    2. Verify that the curve intersects the \(x\)-axis at the point where \(x = 4\).
    3. In this question you must show detailed reasoning. Determine the exact area of the shaded region enclosed between \(l\), the curve, the \(x\)-axis and the \(y\)-axis.
    Question 9
    View details
    9
    \includegraphics[max width=\textwidth, alt={}, center]{31b0d5b6-1593-489b-bbcd-486e7c96ff18-07_609_894_495_242} A body remains at rest when subjected to the horizontal and vertical forces shown in the diagram.
    Determine the value of \(F _ { 1 }\) and the value of \(F _ { 2 }\).
    Question 10
    View details
    10 A cyclist starts from rest and moves with constant acceleration along a straight horizontal road. The cyclist reaches a speed of \(6 \mathrm {~ms} ^ { - 1 }\) in 25 seconds. The cyclist then moves with constant acceleration \(0.05 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) until the speed is \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The cyclist then moves with constant deceleration until coming to rest. The total time for the cyclist's journey is 150 seconds.
    1. Sketch a velocity-time graph to represent the cyclist's motion.
    2. Find the acceleration during the first 25 seconds of the cyclist's motion. The cyclist takes \(T\) seconds to decelerate from \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) until coming to rest.
    3. Determine the value of \(T\).
    4. Determine the average speed for the cyclist's journey.
    Question 11
    View details
    11
    \includegraphics[max width=\textwidth, alt={}, center]{31b0d5b6-1593-489b-bbcd-486e7c96ff18-08_451_1340_251_244} A train consists of an engine \(A\) of mass 50000 kg and a carriage \(B\) of mass 20000 kg . The engine and carriage are connected by a rigid coupling. The coupling is modelled as light and horizontal. The resistances to motion acting on \(A\) and \(B\) are 9000 N and 1250 N respectively (see diagram).
    The train passes through station \(P\) with speed \(15 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and moves along a straight horizontal track with constant acceleration \(0.01 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) towards station \(Q\). The distance between \(P\) and \(Q\) is 12.95 km .
    1. Determine the time, in minutes, to travel between \(P\) and \(Q\). For the train's motion between \(P\) and \(Q\), determine the following.
    2. The driving force of the engine.
    3. The tension in the coupling between \(A\) and \(B\).
    Question 12
    View details
    12
    \includegraphics[max width=\textwidth, alt={}, center]{31b0d5b6-1593-489b-bbcd-486e7c96ff18-09_647_935_260_242} A particle \(P\) moves in a straight line. At time \(t\) seconds, where \(t \geqslant 0\), the velocity of \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It is given that \(v = - 3 t ^ { 2 } + 24 t + k\), where \(k\) is a positive constant. The diagram shows the velocity-time graph for the motion of \(P\).
    \(P\) attains its maximum velocity at time \(T\) seconds. Given that the distance travelled by \(P\) between times \(t = 1\) and \(t = T\) is 297 m , determine the time when \(P\) is instantaneously at rest. \section*{END OF QUESTION PAPER}