6 A curve \(C\) has an equation which satisfies \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 3 x ^ { 2 } + 2\), for all values of \(x\).
- It is given that \(C\) has a single stationary point. Determine the nature of this stationary point.
The diagram shows the graph of the gradient function for \(C\).
\includegraphics[max width=\textwidth, alt={}, center]{31b0d5b6-1593-489b-bbcd-486e7c96ff18-04_702_442_1672_242} - Given that \(C\) passes through the point \(\left( - 1 , \frac { 1 } { 4 } \right)\), find the equation of \(C\) in the form \(y = \mathrm { f } ( x )\).