CAIE P3 2016 November — Question 5

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2016
SessionNovember
TopicDifferential equations

5
\includegraphics[max width=\textwidth, alt={}, center]{ccadf73b-16f5-463a-8f69-1394839d5325-2_346_437_1155_854} The diagram shows a variable point \(P\) with coordinates \(( x , y )\) and the point \(N\) which is the foot of the perpendicular from \(P\) to the \(x\)-axis. \(P\) moves on a curve such that, for all \(x \geqslant 0\), the gradient of the curve is equal in value to the area of the triangle \(O P N\), where \(O\) is the origin.
  1. State a differential equation satisfied by \(x\) and \(y\). The point with coordinates \(( 0,2 )\) lies on the curve.
  2. Solve the differential equation to obtain the equation of the curve, expressing \(y\) in terms of \(x\).
  3. Sketch the curve.