AQA FP3 2014 June — Question 7 4 marks

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2014
SessionJune
Marks4
TopicTaylor series
TypeMaclaurin series for ln(trigonometric expressions)

7
  1. It is given that \(y = \ln ( \cos x + \sin x )\).
    1. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \frac { 2 } { 1 + \sin 2 x }\).
    2. Find \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\).
    1. Hence use Maclaurin's theorem to show that the first three non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln ( \cos x + \sin x )\) are \(x - x ^ { 2 } + \frac { 2 } { 3 } x ^ { 3 }\).
    2. Write down the first three non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln ( \cos x - \sin x )\).
  2. Hence find the first three non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \left( \frac { \cos 2 x } { \mathrm { e } ^ { 3 x - 1 } } \right)\).
    [0pt] [4 marks]
    \includegraphics[max width=\textwidth, alt={}]{0eb3e96e-528c-4a99-b164-31cc865f0d68-17_2484_1707_221_153}
    \includegraphics[max width=\textwidth, alt={}]{0eb3e96e-528c-4a99-b164-31cc865f0d68-19_2484_1707_221_153}