First order differential equations (integrating factor)
6
By using an integrating factor, find the general solution of the differential equation
$$\frac { \mathrm { d } u } { \mathrm {~d} x } - \frac { 2 x } { x ^ { 2 } + 4 } u = 3 \left( x ^ { 2 } + 4 \right)$$
giving your answer in the form \(u = \mathrm { f } ( x )\). [0pt]
[6 marks]
Show that the substitution \(u = x ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x }\) transforms the differential equation
$$x ^ { 2 } \left( x ^ { 2 } + 4 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 8 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = 3 \left( x ^ { 2 } + 4 \right) ^ { 2 }$$
into
$$\frac { \mathrm { d } u } { \mathrm {~d} x } - \frac { 2 x } { x ^ { 2 } + 4 } u = 3 \left( x ^ { 2 } + 4 \right)$$
Hence, given that \(x > 0\), find the general solution of the differential equation
$$x ^ { 2 } \left( x ^ { 2 } + 4 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 8 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = 3 \left( x ^ { 2 } + 4 \right) ^ { 2 }$$
[2 marks]