AQA FP3 2014 June — Question 6 8 marks

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2014
SessionJune
Marks8
TopicFirst order differential equations (integrating factor)

6
  1. By using an integrating factor, find the general solution of the differential equation $$\frac { \mathrm { d } u } { \mathrm {~d} x } - \frac { 2 x } { x ^ { 2 } + 4 } u = 3 \left( x ^ { 2 } + 4 \right)$$ giving your answer in the form \(u = \mathrm { f } ( x )\).
    [0pt] [6 marks]
  2. Show that the substitution \(u = x ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x }\) transforms the differential equation $$x ^ { 2 } \left( x ^ { 2 } + 4 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 8 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = 3 \left( x ^ { 2 } + 4 \right) ^ { 2 }$$ into $$\frac { \mathrm { d } u } { \mathrm {~d} x } - \frac { 2 x } { x ^ { 2 } + 4 } u = 3 \left( x ^ { 2 } + 4 \right)$$
  3. Hence, given that \(x > 0\), find the general solution of the differential equation $$x ^ { 2 } \left( x ^ { 2 } + 4 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 8 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = 3 \left( x ^ { 2 } + 4 \right) ^ { 2 }$$ [2 marks]