Maclaurin series for ln(trigonometric expressions)

Finding Maclaurin series for logarithmic functions involving trigonometric expressions such as ln(cos x), ln(cos ax), ln(sin x + cos x), ln(1 + sin x), or ln(1 + tan x). These require using trigonometric derivatives and often involve finding non-zero terms.

8 questions

OCR FP2 2008 January Q1
1 It is given that \(\mathrm { f } ( x ) = \ln ( 1 + \cos x )\).
  1. Find the exact values of \(f ( 0 ) , f ^ { \prime } ( 0 )\) and \(f ^ { \prime \prime } ( 0 )\).
  2. Hence find the first two non-zero terms of the Maclaurin series for \(\mathrm { f } ( x )\).
OCR FP2 2012 January Q1
1 Given that \(\mathrm { f } ( x ) = \ln ( \cos 3 x )\), find \(\mathrm { f } ^ { \prime } ( 0 )\) and \(\mathrm { f } ^ { \prime \prime } ( 0 )\). Hence show that the first term in the Maclaurin series for \(\mathrm { f } ( x )\) is \(a x ^ { 2 }\), where the value of \(a\) is to be found.
AQA FP3 2008 January Q7
7
    1. Write down the expansion of \(\ln ( 1 + 2 x )\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\).
    2. State the range of values of \(x\) for which this expansion is valid.
    1. Given that \(y = \ln \cos x\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x } , \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\).
    2. Find the value of \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\) when \(x = 0\).
    3. Hence, by using Maclaurin's theorem, show that the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \cos x\) are $$- \frac { x ^ { 2 } } { 2 } - \frac { x ^ { 4 } } { 12 }$$
  1. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { x \ln ( 1 + 2 x ) } { x ^ { 2 } - \ln \cos x } \right]$$
AQA FP3 2012 January Q6
6
  1. Given that \(y = \ln \cos 2 x\), find \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\).
  2. Use Maclaurin's theorem to show that the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \cos 2 x\) are \(- 2 x ^ { 2 } - \frac { 4 } { 3 } x ^ { 4 }\).
  3. Hence find the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \sec ^ { 2 } 2 x\).
AQA FP3 2011 June Q5
5
  1. Given that \(y = \ln ( 1 + 2 \tan x )\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    (You may leave your expression for \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) unsimplified.)
  2. Hence, using Maclaurin's theorem, find the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln ( 1 + 2 \tan x )\).
    (2 marks)
  3. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { \ln ( 1 + 2 \tan x ) } { \ln ( 1 - x ) } \right]$$ (4 marks)
AQA FP3 2012 June Q6
6 It is given that \(y = \ln ( 1 + \sin x )\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \mathrm { e } ^ { - y }\).
  3. Express \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\) in terms of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\mathrm { e } ^ { - y }\).
  4. Hence, by using Maclaurin's theorem, find the first four non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln ( 1 + \sin x )\).
AQA FP3 2014 June Q7
4 marks
7
  1. It is given that \(y = \ln ( \cos x + \sin x )\).
    1. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \frac { 2 } { 1 + \sin 2 x }\).
    2. Find \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\).
    1. Hence use Maclaurin's theorem to show that the first three non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln ( \cos x + \sin x )\) are \(x - x ^ { 2 } + \frac { 2 } { 3 } x ^ { 3 }\).
    2. Write down the first three non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln ( \cos x - \sin x )\).
  2. Hence find the first three non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \left( \frac { \cos 2 x } { \mathrm { e } ^ { 3 x - 1 } } \right)\).
    [0pt] [4 marks]
    \includegraphics[max width=\textwidth, alt={}]{0eb3e96e-528c-4a99-b164-31cc865f0d68-17_2484_1707_221_153}
    \includegraphics[max width=\textwidth, alt={}]{0eb3e96e-528c-4a99-b164-31cc865f0d68-19_2484_1707_221_153}
OCR Further Pure Core 2 2019 June Q10
10
  1. Use differentiation to find the first two non-zero terms of the Maclaurin expansion of \(\ln \left( \frac { 1 } { 2 } + \cos x \right)\).
  2. By considering the root of the equation \(\ln \left( \frac { 1 } { 2 } + \cos x \right) = 0\) deduce that \(\pi \approx 3 \sqrt { 3 \ln \left( \frac { 3 } { 2 } \right) }\). \section*{END OF QUESTION PAPER}