8 The diagram shows a sketch of a curve \(C\), the pole \(O\) and the initial line. The curve \(C\) intersects the initial line at the point \(P\).
\includegraphics[max width=\textwidth, alt={}, center]{0eb3e96e-528c-4a99-b164-31cc865f0d68-20_432_949_402_525}
The polar equation of \(C\) is \(r = \left( 1 - \tan ^ { 2 } \theta \right) \sec \theta , - \frac { \pi } { 4 } \leqslant \theta \leqslant \frac { \pi } { 4 }\).
- Show that the area of the region bounded by the curve \(C\) is \(\frac { 8 } { 15 }\).
- The curve whose polar equation is
$$r = \frac { 1 } { 2 } \sec ^ { 3 } \theta , \quad - \frac { \pi } { 4 } \leqslant \theta \leqslant \frac { \pi } { 4 }$$
intersects \(C\) at the points \(A\) and \(B\).
- Find the polar coordinates of \(A\) and \(B\).
- Given that angle \(O A P =\) angle \(O B P = \alpha\), show that \(\tan \alpha = k \sqrt { 3 }\), where \(k\) is an integer.
- Using your value of \(k\) from part (b)(ii), state whether the point \(A\) lies inside or lies outside the circle whose diameter is \(O P\). Give a reason for your answer.
[0pt]
[1 mark]
\includegraphics[max width=\textwidth, alt={}]{0eb3e96e-528c-4a99-b164-31cc865f0d68-21_2484_1707_221_153}
\includegraphics[max width=\textwidth, alt={}]{0eb3e96e-528c-4a99-b164-31cc865f0d68-23_2484_1707_221_153}