CAIE FP2 2013 November — Question 4

Exam BoardCAIE
ModuleFP2 (Further Pure Mathematics 2)
Year2013
SessionNovember
TopicMoments

4
\includegraphics[max width=\textwidth, alt={}, center]{b486decd-75b8-44bd-889f-2472f1163871-3_567_575_258_785} A uniform circular disc, with centre \(O\) and weight \(W\), rests in equilibrium on a horizontal floor and against a vertical wall. The plane of the disc is vertical and perpendicular to the wall. The disc is in contact with the floor at \(A\) and with the wall at \(B\). A force of magnitude \(P\) acts tangentially on the disc at the point \(C\) on the edge of the disc, where the radius \(O C\) makes an angle \(\theta\) with the upward vertical, and \(\tan \theta = \frac { 4 } { 3 }\) (see diagram). The coefficient of friction between the disc and the floor and between the disc and the wall is \(\frac { 1 } { 2 }\). Show that the sum of the magnitudes of the frictional forces at \(A\) and \(B\) is equal to \(P\). Given that the equilibrium is limiting at both \(A\) and \(B\),
  1. show that \(P = \frac { 15 } { 34 } \mathrm {~W}\),
  2. find the ratio of the magnitude of the normal reaction at \(A\) to the magnitude of the normal reaction at \(B\).