CAIE FP2 (Further Pure Mathematics 2) 2013 November

Question 1
View details
1
\includegraphics[max width=\textwidth, alt={}, center]{b486decd-75b8-44bd-889f-2472f1163871-2_553_435_258_854} Three identical uniform rods, \(A B , B C\) and \(C D\), each of mass \(M\) and length \(2 a\), are rigidly joined to form three sides of a square. A uniform circular disc, of mass \(\frac { 2 } { 3 } M\) and radius \(a\), has the opposite ends of one of its diameters attached to \(A\) and \(D\) respectively. The disc and the rods all lie in the same plane (see diagram). Find the moment of inertia of the system about the axis \(A D\).
Question 2
View details
2 The point \(O\) is on the fixed line \(l\). The point \(A\) on \(l\) is such that \(O A = 3 \mathrm {~m}\). A particle \(P\) oscillates on \(l\) in simple harmonic motion with centre \(O\) and period \(\pi\) seconds. When \(P\) is at \(A\) its speed is \(12 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Find the speed of \(P\) when it is at the point \(B\) on \(l\), where \(O B = 6 \mathrm {~m}\) and \(B\) is on the same side of \(O\) as \(A\). Find, correct to 2 decimal places, the time, in seconds, taken for \(P\) to travel directly from \(A\) to \(B\).
Question 3 9 marks
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{b486decd-75b8-44bd-889f-2472f1163871-2_570_419_1539_863} A uniform disc, of mass 2 kg and radius 0.2 m , is free to rotate in a vertical plane about a smooth horizontal axis through its centre. One end of a light inextensible string is attached to a point on the rim of the disc and the string is wound round the rim. The other end of the string is attached to a small block of mass 4 kg , which hangs freely (see diagram). The system is released from rest. During the subsequent motion, the block experiences a constant resistance to its motion, of magnitude \(R \mathrm {~N}\). Given that the angular speed of the disc after it has turned through 2 radians is \(5 \mathrm { rad } \mathrm { s } ^ { - 1 }\), find \(R\) and the tension in the string.
[0pt] [9]
Question 4
View details
4
\includegraphics[max width=\textwidth, alt={}, center]{b486decd-75b8-44bd-889f-2472f1163871-3_567_575_258_785} A uniform circular disc, with centre \(O\) and weight \(W\), rests in equilibrium on a horizontal floor and against a vertical wall. The plane of the disc is vertical and perpendicular to the wall. The disc is in contact with the floor at \(A\) and with the wall at \(B\). A force of magnitude \(P\) acts tangentially on the disc at the point \(C\) on the edge of the disc, where the radius \(O C\) makes an angle \(\theta\) with the upward vertical, and \(\tan \theta = \frac { 4 } { 3 }\) (see diagram). The coefficient of friction between the disc and the floor and between the disc and the wall is \(\frac { 1 } { 2 }\). Show that the sum of the magnitudes of the frictional forces at \(A\) and \(B\) is equal to \(P\). Given that the equilibrium is limiting at both \(A\) and \(B\),
  1. show that \(P = \frac { 15 } { 34 } \mathrm {~W}\),
  2. find the ratio of the magnitude of the normal reaction at \(A\) to the magnitude of the normal reaction at \(B\).
Question 5
View details
5 Two uniform small smooth spheres \(A\) and \(B\), of equal radii, have masses \(2 m\) and \(m\) respectively. They lie at rest on a smooth horizontal plane. Sphere \(A\) is projected directly towards \(B\) with speed \(u\). After the collision \(B\) goes on to collide directly with a fixed smooth vertical barrier, before colliding with \(A\) again. The coefficient of restitution between \(A\) and \(B\) is \(\frac { 2 } { 3 }\) and the coefficient of restitution between \(B\) and the barrier is \(e\). After the second collision between \(A\) and \(B\), the speed of \(B\) is five times the speed of \(A\). Find the two possible values of \(e\).
Question 6
View details
6 A fair die is thrown until a 5 or a 6 is obtained. The number of throws taken is denoted by the random variable \(X\). State the mean value of \(X\). Find the probability that obtaining a 5 or a 6 takes more than 8 throws. Find the least integer \(n\) such that the probability of obtaining a 5 or a 6 in fewer than \(n\) throws is more than 0.99.
Question 7
View details
7 A random sample of 10 observations of a normally distributed random variable \(X\) gave the following summarised data, where \(\bar { x }\) denotes the sample mean. $$\Sigma x = 70.4 \quad \Sigma ( x - \bar { x } ) ^ { 2 } = 8.48$$ Test, at the \(10 \%\) significance level, whether the population mean of \(X\) is less than 7.5.
Question 8
View details
8 The lifetime, in years, of an electrical component is the random variable \(T\), with probability density function f given by $$\mathrm { f } ( t ) = \begin{cases} A \mathrm { e } ^ { - \lambda t } & t \geqslant 0
0 & \text { otherwise } \end{cases}$$ where \(A\) and \(\lambda\) are positive constants.
  1. Show that \(A = \lambda\). It is known that out of 100 randomly chosen components, 16 failed within the first year.
  2. Find an estimate for the value of \(\lambda\), and hence find an estimate for the median value of \(T\).
Question 9
View details
9 For a random sample of 10 observations of pairs of values \(( x , y )\), the equations of the regression lines of \(y\) on \(x\) and of \(x\) on \(y\) are $$y = 4.21 x - 0.862 \quad \text { and } \quad x = 0.043 y + 6.36$$ respectively.
  1. Find the value of the product moment correlation coefficient for the sample.
  2. Test, at the \(10 \%\) significance level, whether there is evidence of non-zero correlation between the variables.
  3. Find the mean values of \(x\) and \(y\) for this sample.
  4. Estimate the value of \(x\) when \(y = 2.3\) and comment on the reliability of your answer.
Question 10
View details
10 Customers were asked which of three brands of coffee, \(A , B\) and \(C\), they prefer. For a random sample of 80 male customers and 60 female customers, the numbers preferring each brand are shown in the following table.
\(A\)\(B\)\(C\)
Male323612
Female183012
Test, at the \(5 \%\) significance level, whether there is a difference between coffee preferences of male and female customers. A larger random sample is now taken. It consists of \(80 n\) male customers and \(60 n\) female customers, where \(n\) is a positive integer. It is found that the proportions choosing each brand are identical to those in the smaller sample. Find the least value of \(n\) that would lead to a different conclusion for the 5\% significance level hypothesis test.
Question 11 EITHER
View details
A smooth sphere, with centre \(O\) and radius \(a\), is fixed on a smooth horizontal plane \(\Pi\). A particle \(P\) of mass \(m\) is projected horizontally from the highest point of the sphere with speed \(\sqrt { } \left( \frac { 2 } { 5 } g a \right)\). While \(P\) remains in contact with the sphere, the angle between \(O P\) and the upward vertical is denoted by \(\theta\). Show that \(P\) loses contact with the sphere when \(\cos \theta = \frac { 4 } { 5 }\). Subsequently the particle collides with the plane \(\Pi\). The coefficient of restitution between \(P\) and \(\Pi\) is \(\frac { 5 } { 9 }\). Find the vertical height of \(P\) above \(\Pi\) when the vertical component of the velocity of \(P\) first becomes zero.
Question 11 OR
View details
A factory produces bottles of spring water. The manager decides to assess the performance of the two machines that are used to fill the bottles with water. He selects a random sample of 60 bottles filled by the first machine \(X\) and a random sample of 80 bottles filled by the second machine \(Y\). The volumes of water, \(x\) and \(y\), measured in appropriate units, are summarised as follows. $$\Sigma x = 58.2 \quad \Sigma x ^ { 2 } = 85.8 \quad \Sigma y = 97.6 \quad \Sigma y ^ { 2 } = 188.6$$ A test at the \(\alpha \%\) significance level shows that the mean volume of water in bottles filled by machine \(X\) is less than the mean volume of water in bottles filled by machine \(Y\). Find the set of possible values of \(\alpha\).