CAIE FP2 2011 June — Question 8

Exam BoardCAIE
ModuleFP2 (Further Pure Mathematics 2)
Year2011
SessionJune
TopicHypothesis test of a normal distribution

8 In a crossword competition the times, \(x\) minutes, taken by a random sample of 6 entrants to complete a crossword are summarised as follows. $$\Sigma x = 210.9 \quad \Sigma ( x - \bar { x } ) ^ { 2 } = 151.2$$ The time to complete a crossword has a normal distribution with mean \(\mu\) minutes. Calculate a \(95 \%\) confidence interval for \(\mu\). Assume now that the standard deviation of the population is known to be 5.6 minutes. Find the smallest sample size that would lead to a \(95 \%\) confidence interval for \(\mu\) of width at most 5 minutes.