| Exam Board | CAIE |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2011 |
| Session | June |
| Topic | Circular Motion 2 |
5 A particle \(P\) of mass \(m\) is placed at the point \(Q\) on the outer surface of a fixed smooth sphere with centre \(O\) and radius \(a\). The acute angle between \(O Q\) and the upward vertical is \(\alpha\), where \(\cos \alpha = \frac { 9 } { 10 }\). The particle is released from rest and begins to move in a vertical circle on the surface of the sphere. Show that \(P\) loses contact with the sphere when \(O P\) makes an angle \(\theta\) with the upward vertical, where \(\cos \theta = \frac { 3 } { 5 }\), and find the speed of \(P\) at this instant.
Show that, in the subsequent motion, when \(P\) is at a distance \(\frac { 7 } { 5 } a\) from the vertical diameter through \(O\), its distance below the horizontal through \(O\) is \(\frac { 31 } { 30 } a\).