\includegraphics[max width=\textwidth, alt={}]{e8a16ec8-b6b7-4b0c-b0c1-8f5f7a9e4fa6-5_383_839_1635_651}
The continuous random variable \(X\) takes values in the interval \(0 \leqslant x \leqslant 3\) only. For \(0 \leqslant x \leqslant 3\) the graph of its probability density function f consists of two straight line segments meeting at the point \(( 1 , k )\), as shown in the diagram. Find \(k\) and hence show that the distribution function F is given by
$$\mathrm { F } ( x ) = \begin{cases} 0 & x \leqslant 0 ,
\frac { 1 } { 3 } x ^ { 2 } & 0 < x \leqslant 1 ,
x - \frac { 1 } { 2 } - \frac { 1 } { 6 } x ^ { 2 } & 1 < x \leqslant 3 ,
1 & x > 3 . \end{cases}$$
The random variable \(Y\) is given by \(Y = X ^ { 2 }\). Find
- the probability density function of \(Y\),
- the median value of \(Y\).