CAIE FP1 (Further Pure Mathematics 1) 2012 November

Question 1
View details
1 Find the cartesian equation corresponding to the polar equation \(r = ( \sqrt { } 2 ) \sec \left( \theta - \frac { 1 } { 4 } \pi \right)\). Sketch the the graph of \(r = ( \sqrt { } 2 ) \sec \left( \theta - \frac { 1 } { 4 } \pi \right)\), for \(- \frac { 1 } { 4 } \pi < \theta < \frac { 3 } { 4 } \pi\), indicating clearly the polar coordinates of the intersection with the initial line.
Question 2
View details
2 The curve \(C\) has equation \(y = 2 x ^ { \frac { 1 } { 2 } }\) for \(0 \leqslant x \leqslant 4\). Find
  1. the mean value of \(y\) with respect to \(x\) for \(0 \leqslant x \leqslant 4\),
  2. the \(y\)-coordinate of the centroid of the region enclosed by \(C\), the line \(x = 4\) and the \(x\)-axis.
Question 3
View details
3 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 13 x = 26 t ^ { 2 } + 3 t + 13$$
Question 4
View details
4 Let \(\mathrm { f } ( r ) = r ( r + 1 ) ( r + 2 )\). Show that $$\mathrm { f } ( r ) - \mathrm { f } ( r - 1 ) = 3 r ( r + 1 )$$ Hence show that \(\sum _ { r = 1 } ^ { n } r ( r + 1 ) = \frac { 1 } { 3 } n ( n + 1 ) ( n + 2 )\). Using the standard result for \(\sum _ { r = 1 } ^ { n } r\), deduce that \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )\). Find the sum of the series $$1 ^ { 2 } + 2 \times 2 ^ { 2 } + 3 ^ { 2 } + 2 \times 4 ^ { 2 } + 5 ^ { 2 } + 2 \times 6 ^ { 2 } + \ldots + 2 ( n - 1 ) ^ { 2 } + n ^ { 2 }$$ where \(n\) is odd.
Question 5
View details
5 Let \(I _ { n }\) denote \(\int _ { 0 } ^ { \infty } x ^ { n } \mathrm { e } ^ { - 2 x } \mathrm {~d} x\). Show that \(I _ { n } = \frac { 1 } { 2 } n I _ { n - 1 }\), for \(n \geqslant 1\). Prove by mathematical induction that, for all positive integers \(n , I _ { n } = \frac { n ! } { 2 ^ { n + 1 } }\).
Question 6
View details
6 Use de Moivre's theorem to show that $$\cos 4 \theta = 8 \cos ^ { 4 } \theta - 8 \cos ^ { 2 } \theta + 1$$ Without using a calculator, verify that \(\cos 4 \theta = - \cos 3 \theta\) for each of the values \(\theta = \frac { 1 } { 7 } \pi , \frac { 3 } { 7 } \pi , \frac { 5 } { 7 } \pi , \pi\). Using the result \(\cos 3 \theta = 4 \cos ^ { 3 } \theta - 3 \cos \theta\), show that the roots of the equation $$8 c ^ { 4 } + 4 c ^ { 3 } - 8 c ^ { 2 } - 3 c + 1 = 0$$ are \(\cos \frac { 1 } { 7 } \pi , \cos \frac { 3 } { 7 } \pi , \cos \frac { 5 } { 7 } \pi , - 1\). Deduce that \(\cos \frac { 1 } { 7 } \pi + \cos \frac { 3 } { 7 } \pi + \cos \frac { 5 } { 7 } \pi = \frac { 1 } { 2 }\).
Question 7
View details
7 The curve \(C\) has equation $$y = \lambda x + \frac { x } { x - 2 }$$ where \(\lambda\) is a non-zero constant. Find the equations of the asymptotes of \(C\). Show that \(C\) has no turning points if \(\lambda < 0\). Sketch \(C\) in the case \(\lambda = - 1\), stating the coordinates of the intersections with the axes.
Question 8
View details
8 The curve \(C\) has parametric equations $$x = \frac { 1 } { 3 } t ^ { 3 } - \ln t , \quad y = \frac { 4 } { 3 } t ^ { \frac { 3 } { 2 } }$$ for \(1 \leqslant t \leqslant 3\). Find the arc length of \(C\). Find also the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
Question 9
View details
9 The plane \(\Pi\) has equation $$\mathbf { r } = 2 \mathbf { i } + 3 \mathbf { j } - \mathbf { k } + \lambda ( \mathbf { i } - 2 \mathbf { j } + 2 \mathbf { k } ) + \mu ( 3 \mathbf { i } + \mathbf { j } - 2 \mathbf { k } )$$ The line \(l\), which does not lie in \(\Pi\), has equation $$\mathbf { r } = 3 \mathbf { i } + 6 \mathbf { j } + 12 \mathbf { k } + t ( 8 \mathbf { i } + 5 \mathbf { j } - 8 \mathbf { k } )$$ Show that \(l\) is parallel to \(\Pi\). Find the position vector of the point at which the line with equation \(\mathbf { r } = 5 \mathbf { i } - 4 \mathbf { j } + 7 \mathbf { k } + s ( 2 \mathbf { i } - \mathbf { j } + \mathbf { k } )\) meets \(\Pi\). Find the perpendicular distance from the point with position vector \(9 \mathbf { i } + 11 \mathbf { j } + 2 \mathbf { k }\) to \(l\).
Question 10
View details
10 Write down the eigenvalues of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 4 & - 16
0 & 2 & 3
0 & 0 & 3 \end{array} \right)$$ Find corresponding eigenvectors. Let \(n\) be a positive integer. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { A } ^ { n } = \mathbf { P D P } \mathbf { P } ^ { - 1 }$$ Find \(\mathbf { P } ^ { - 1 }\) and \(\mathbf { A } ^ { n }\). Hence find \(\lim _ { n \rightarrow \infty } \left( 3 ^ { - n } \mathbf { A } ^ { n } \right)\).
Question 11 EITHER
View details
The roots of the equation \(x ^ { 4 } - 3 x ^ { 2 } + 5 x - 2 = 0\) are \(\alpha , \beta , \gamma , \delta\), and \(\alpha ^ { n } + \beta ^ { n } + \gamma ^ { n } + \delta ^ { n }\) is denoted by \(S _ { n }\). Show that $$S _ { n + 4 } - 3 S _ { n + 2 } + 5 S _ { n + 1 } - 2 S _ { n } = 0$$ Find the values of
  1. \(S _ { 2 }\) and \(S _ { 4 }\),
  2. \(S _ { 3 }\) and \(S _ { 5 }\). Hence find the value of $$\alpha ^ { 2 } \left( \beta ^ { 3 } + \gamma ^ { 3 } + \delta ^ { 3 } \right) + \beta ^ { 2 } \left( \gamma ^ { 3 } + \delta ^ { 3 } + \alpha ^ { 3 } \right) + \gamma ^ { 2 } \left( \delta ^ { 3 } + \alpha ^ { 3 } + \beta ^ { 3 } \right) + \delta ^ { 2 } \left( \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } \right) .$$
Question 11 OR
View details
The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 3 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 2 & 1 & - 1 & 4
3 & 4 & 6 & 1
- 1 & 2 & 8 & - 7 \end{array} \right)$$ The range space of T is \(R\). In any order,
  1. show that the dimension of \(R\) is 2 ,
  2. find a basis for \(R\) and obtain a cartesian equation for \(R\),
  3. find a basis for the null space of T . The vector \(\left( \begin{array} { l } 8
    7
    k \end{array} \right)\) belongs to \(R\). Find the value of \(k\) and, with this value of \(k\), find the general solution of $$\mathbf { M } \mathbf { x } = \left( \begin{array} { l } 8
    7
    k \end{array} \right) .$$