CAIE FP1 2016 June — Question 11 OR

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2016
SessionJune
Topic3x3 Matrices

The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & - 2 & 3 & - 4
2 & - 4 & 7 & - 9
4 & - 8 & 14 & - 18
5 & - 10 & 17 & - 22 \end{array} \right)$$ Find the rank of \(\mathbf { M }\). Obtain a basis for the null space \(K\) of T . Evaluate $$\mathbf { M } \left( \begin{array} { r } 1
- 2
2
- 1 \end{array} \right)$$ and hence show that any solution of $$\mathbf { M x } = \left( \begin{array} { l }