| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2016 |
| Session | June |
| Topic | 3x3 Matrices |
The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where
$$\mathbf { M } = \left( \begin{array} { r r r r }
1 & - 2 & 3 & - 4
2 & - 4 & 7 & - 9
4 & - 8 & 14 & - 18
5 & - 10 & 17 & - 22
\end{array} \right)$$
Find the rank of \(\mathbf { M }\).
Obtain a basis for the null space \(K\) of T .
Evaluate
$$\mathbf { M } \left( \begin{array} { r }
1
- 2
2
- 1
\end{array} \right)$$
and hence show that any solution of
$$\mathbf { M x } = \left( \begin{array} { l }