| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2016 |
| Session | June |
| Topic | Polar coordinates |
4 A curve \(C\) has polar equation \(r ^ { 2 } = 8 \operatorname { cosec } 2 \theta\) for \(0 < \theta < \frac { 1 } { 2 } \pi\). Find a cartesian equation of \(C\).
Sketch \(C\).
Determine the exact area of the sector bounded by the arc of \(C\) between \(\theta = \frac { 1 } { 6 } \pi\) and \(\theta = \frac { 1 } { 3 } \pi\), the half-line \(\theta = \frac { 1 } { 6 } \pi\) and the half-line \(\theta = \frac { 1 } { 3 } \pi\).
[0pt]
[It is given that \(\int \operatorname { cosec } x \mathrm {~d} x = \ln \left| \tan \frac { 1 } { 2 } x \right| + c\).]