| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2016 |
| Session | June |
| Topic | Second order differential equations |
9 Find the value of the constant \(k\) such that \(y = k x ^ { 2 } \mathrm { e } ^ { 2 x }\) is a particular integral of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 4 \mathrm { e } ^ { 2 x }$$
Hence find the general solution of ( \(*\) ).
Find the particular solution of ( \(*\) ) such that \(y = 3\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - 2\) when \(x = 0\).