OCR S3 2015 June — Question 7

Exam BoardOCR
ModuleS3 (Statistics 3)
Year2015
SessionJune
TopicContinuous Probability Distributions and Random Variables
TypePiecewise PDF with k

7 A continuous random variable \(X\) has probability density function $$f ( x ) = \left\{ \begin{array} { c c } k x & 0 \leqslant x < 2
\frac { k ( 4 - x ) ^ { 2 } } { 2 } & 2 \leqslant x \leqslant 4
0 & \text { otherwise } \end{array} \right.$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 3 } { 10 }\).
  2. Find \(\mathrm { E } ( X )\).
  3. Find the cumulative distribution function of \(X\).
  4. Find the upper quartile of \(X\), correct to 3 significant figures. \section*{END OF QUESTION PAPER}