Piecewise PDF with k

The PDF has multiple pieces (two or more different formulas on different intervals), and the question asks to find or show the value of a constant using the integral equals 1 property and continuity/matching conditions.

14 questions

CAIE Further Paper 4 2022 June Q3
3 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} k x ( 4 - x ) & 0 \leqslant x < 2
k ( 6 - x ) & 2 \leqslant x \leqslant 6
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 3 } { 40 }\).
  2. Given that \(\mathrm { E } ( X ) = 2.5\), find \(\operatorname { Var } ( X )\).
  3. Find the median value of \(X\).
CAIE Further Paper 4 2021 November Q3
3 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} a + \frac { 1 } { 5 } x & 0 \leqslant x < 1
2 a - \frac { 1 } { 5 } x & 1 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases}$$ where \(a\) is a constant.
  1. Find the value of \(a\).
  2. Find \(\mathrm { E } \left( X ^ { 2 } \right)\).
  3. Find the cumulative distribution function of \(X\).
CAIE Further Paper 4 2022 November Q4
4 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} k & 0 \leqslant x < 1
k x & 1 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 2 } { 5 }\).
  2. Find the interquartile range of \(X\).
  3. Find \(\operatorname { Var } ( X )\).
CAIE Further Paper 4 2024 November Q4
4 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} k x ^ { 3 } & 0 \leqslant x < 1 ,
k ( 5 - x ) & 1 \leqslant x \leqslant 5 ,
0 & \text { otherwise } , \end{cases}$$ where \(k\) is a constant.
  1. Sketch the graph of f.
  2. Show that \(k = \frac { 4 } { 33 }\).
    \includegraphics[max width=\textwidth, alt={}, center]{e2a45d19-7d48-4aa5-93f9-6ef90f99d7c4-09_2725_35_99_20}
  3. Find the cumulative distribution function of \(X\).
  4. Find the median value of \(X\).
CAIE Further Paper 4 2024 November Q4
4 The continuous random variable \(X\) has probability density function f given by $$f ( x ) = \begin{cases} k x ^ { 3 } & 0 \leqslant x < 1
k ( 5 - x ) & 1 \leqslant x \leqslant 5
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Sketch the graph of f.
  2. Show that \(k = \frac { 4 } { 33 }\).
    \includegraphics[max width=\textwidth, alt={}, center]{8b2a13d7-62f4-45a7-84c5-7d5bc870b8ce-09_2725_35_99_20}
  3. Find the cumulative distribution function of \(X\).
  4. Find the median value of \(X\).
OCR S3 2011 June Q3
3 The monthly demand for a product, \(X\) thousand units, is modelled by the random variable \(X\) with probability density function given by $$f ( x ) = \begin{cases} a x & 0 \leqslant x \leqslant 1
a ( x - 2 ) ^ { 2 } & 1 < x \leqslant 2
0 & \text { otherwise } \end{cases}$$ where \(a\) is a positive constant. Find
  1. the value of \(a\),
  2. the probability that the monthly demand is at most 1500 units,
  3. the expected monthly demand.
OCR S3 2014 June Q6
6 The continuous random variable \(X\) has probability density function given by $$\mathrm { f } ( x ) = \left\{ \begin{array} { c l } k \sin x & 0 \leqslant x \leqslant \frac { 1 } { 2 } \pi ,
k \left( 2 - \frac { 2 x } { \pi } \right) & \frac { 1 } { 2 } \pi \leqslant x \leqslant \pi ,
0 & \text { otherwise, } \end{array} \right.$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 4 } { 4 + \pi }\).
  2. Find \(\mathrm { E } ( X )\), correct to 3 significant figures, showing all necessary working.
OCR S3 2015 June Q7
7 A continuous random variable \(X\) has probability density function $$f ( x ) = \left\{ \begin{array} { c c } k x & 0 \leqslant x < 2
\frac { k ( 4 - x ) ^ { 2 } } { 2 } & 2 \leqslant x \leqslant 4
0 & \text { otherwise } \end{array} \right.$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 3 } { 10 }\).
  2. Find \(\mathrm { E } ( X )\).
  3. Find the cumulative distribution function of \(X\).
  4. Find the upper quartile of \(X\), correct to 3 significant figures. \section*{END OF QUESTION PAPER}
Edexcel S2 2018 January Q7
  1. The continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) given by
$$f ( x ) = \begin{cases} \frac { 1 } { 16 } x ^ { 2 } & 1 \leqslant x < 3
k ( 4 - x ) & 3 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$
  1. Show that \(k = \frac { 11 } { 12 }\)
  2. Sketch \(\mathrm { f } ( x )\) for \(1 \leqslant x \leqslant 4\)
  3. Write down the mode of \(X\) Given that \(\mathrm { E } ( X ) = \frac { 25 } { 9 }\)
  4. use algebraic integration to find \(\operatorname { Var } ( X )\), giving your answer to 3 significant figures. The cumulative distribution function of \(X\) is given by $$\mathrm { F } ( x ) = \left\{ \begin{array} { l r } 0 & x < 1
    \frac { 1 } { 48 } \left( x ^ { 3 } + c \right) & 1 \leqslant x < 3
    \frac { 11 } { 12 } \left( 4 x - \frac { 1 } { 2 } x ^ { 2 } + d \right) & 3 \leqslant x \leqslant 4
    1 & x > 4 \end{array} \right.$$
    1. Find the exact value of \(C\)
    2. Find the exact value of \(d\)
  5. Calculate, to 3 significant figures, the upper quartile of \(X\)
    \includegraphics[max width=\textwidth, alt={}]{a814156d-6945-4601-9cae-d28d8ae0db1e-28_2632_1826_121_121}
Edexcel S2 2019 January Q7
  1. The continuous random variable \(X\) has probability density function
$$f ( x ) = \begin{cases} c ( x + 3 ) & - 3 \leqslant x < 0
\frac { 5 } { 36 } ( 3 - x ) & 0 \leqslant x \leqslant 3
0 & \text { otherwise } \end{cases}$$ where \(c\) is a positive constant.
  1. Show that \(c = \frac { 1 } { 12 }\)
    1. Sketch the probability density function.
    2. Explain why the mode of \(X = 0\)
  2. Find the cumulative distribution function of \(X\), for all values of \(x\)
  3. Find, to 3 significant figures, the value of \(d\) such that \(\mathrm { P } ( X > d \mid X > 0 ) = \frac { 2 } { 5 }\)
    Leave blank
    Q7

    \hline &
    \hline \end{tabular}
Edexcel S2 2015 June Q7
  1. A random variable \(X\) has probability density function
$$f ( x ) = \begin{cases} \frac { 2 x } { 15 } & 0 \leqslant x \leqslant k
\frac { 1 } { 5 } ( 5 - x ) & k < x \leqslant 5
0 & \text { otherwise } \end{cases}$$
  1. Showing your working clearly, find the value of \(k\).
  2. Write down the mode of \(X\).
  3. Find \(\mathrm { P } \left( \left. X \leqslant \frac { k } { 2 } \right\rvert \, X \leqslant k \right)\)
Edexcel S2 2022 October Q2
  1. A random variable \(X\) has probability density function given by
$$f ( x ) = \left\{ \begin{array} { c c } \frac { 1 } { 4 } & - \frac { 1 } { 2 } \leqslant x < \frac { 1 } { 2 }
2 x - \frac { 3 } { 4 } & \frac { 1 } { 2 } \leqslant x \leqslant k
0 & \text { otherwise } \end{array} \right.$$ where \(k\) is a positive constant.
  1. Sketch the graph of \(\mathrm { f } ( x )\)
  2. By forming and solving an equation in \(k\), show that \(k = 1.25\)
  3. Use calculus to find \(\mathrm { E } ( X )\)
  4. Calculate the interquartile range of \(X\)
AQA Further AS Paper 2 Statistics 2023 June Q8
8 The continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) It is given that \(\mathrm { f } ( x ) = x ^ { 2 }\) for \(0 \leq x \leq 1\)
It is also given that \(\mathrm { f } ( x )\) is a linear function for \(1 < x \leq \frac { 3 } { 2 }\)
For all other values of \(x , \mathrm { f } ( x ) = 0\) A sketch of the graph of \(y = \mathrm { f } ( x )\) is shown below.
\includegraphics[max width=\textwidth, alt={}, center]{c309e27b-5618-4f94-aecd-a55d8756ef03-12_821_1077_758_543} Show that \(\operatorname { Var } ( X ) = 0.0864\) correct to three significant figures.
\includegraphics[max width=\textwidth, alt={}, center]{c309e27b-5618-4f94-aecd-a55d8756ef03-14_2491_1755_173_123} Additional page, if required. number Write the question numbers in the left-hand margin.
OCR MEI Further Statistics Major Specimen Q2
2 The continuous random variable \(X\) takes values in the interval \(- 1 \leq x \leq 1\) and has probability density function $$f ( x ) = \left\{ \begin{array} { l r } a & - 1 \leq x < 0
a + x ^ { 2 } & 0 \leq x \leq 1 \end{array} \right.$$ where \(a\) is a constant.
  1. (A) Sketch the probability density function.
    (B) Show that \(a = \frac { 1 } { 3 }\).
  2. Find
    (A) \(\mathrm { P } \left( X < \frac { 1 } { 2 } \right)\),
    (B) the mean of \(X\).
  3. Show that the median of \(X\) satisfies the equation \(2 m ^ { 3 } + 2 m - 1 = 0\).