5 Two guesthouses, the Albion and the Blighty, have 8 and 6 rooms respectively. The demand for rooms at the Albion has a Poisson distribution with mean 6.5 and the demand for rooms at the Blighty has an independent Poisson distribution with mean 5.5. The owners have agreed that if their guesthouse is full, they will re-direct guests to the other.
- Find the probability that, on any particular night, the two guesthouses together do not have enough rooms to meet demand.
- The Albion charges \(\pounds 60\) per room per night, and the Blighty \(\pounds 80\). Find the probability, that on a particular night, the total income of the two guesthouses is exactly \(\pounds 400\).
- If \(A\) is the number of rooms demanded at the Albion each night, and \(B\) the number of rooms demanded at the Blighty each night, find the mean and variance of the variable \(C = 60 A + 80 B\). State whether \(C\) has a Poisson distribution, giving a reason for your answer.