OCR S3 2015 June — Question 6

Exam BoardOCR
ModuleS3 (Statistics 3)
Year2015
SessionJune
TopicChi-squared distribution

6 In each of 38 randomly selected weeks of the English Premier Football League there were 10 matches. Table 1 summarises the number of home wins in 10 matches, \(X\), and the corresponding number of weeks. \begin{table}[h]
Number of home wins012345678910
Number of weeks01288971200
\captionsetup{labelformat=empty} \caption{Table 1}
\end{table} A researcher investigates whether \(X\) can be modelled by the distribution \(\mathrm { B } ( 10 , p )\). He calculates the expected frequencies using a value of \(p\) obtained from the sample mean.
  1. Show that \(p = 0.45\). Table 2 shows the observed and expected number of weeks. \begin{table}[h]
    Number of home wins012345678910Totals
    Observed number of weeks0128897120038
    Expected number of weeks0.0960.7882.8996.3269.0588.8936.0642.8350.8700.1580.01338
    \captionsetup{labelformat=empty} \caption{Table 2
  2. Show how the value of 2.835 for 7 home wins is obtained.}
\end{table} The researcher carries out a test, at the \(5 \%\) significance level, of whether the distribution \(\mathrm { B } ( 10 , p )\) fits the data.
  • Explain why it is necessary to combine classes.
  • Carry out the test.