OCR S3 2015 June — Question 3

Exam BoardOCR
ModuleS3 (Statistics 3)
Year2015
SessionJune
TopicWilcoxon tests

3 A tutor gave an assessment to 6 randomly chosen new eleven-year-old students. After each student had received 30 hours of tuition, they were given a second assessment. The scores are shown in the table.
Student\(A\)\(B\)\(C\)\(D\)\(E\)\(F\)
1st assessment124121111113118119
2nd assessment127119114110120122
  1. Show that, at the \(5 \%\) significance level, there is insufficient evidence that students' scores are higher, on average, after tuition than before tuition. State a necessary assumption.
  2. Disappointed by this result, the tutor looked again at the first assessment. She discovered that the first assessment was too easy, in fact being a test for ten-year-olds, not eleven-year-olds. She decided to reduce each score for the first assessment by a constant integer \(k\). Find the least value of \(k\) for which there is evidence at the \(5 \%\) significance level that the students' scores have, on average, improved.