Express \(5 \cos x + 12 \sin x\) in the form \(R \cos ( x - \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
Hence give details of a pair of transformations which transforms the curve \(y = \cos x\) to the curve \(y = 5 \cos x + 12 \sin x\).
Solve, for \(0 ^ { \circ } < x < 360 ^ { \circ }\), the equation \(5 \cos x + 12 \sin x = 2\), giving your answers correct to the nearest \(0.1 ^ { \circ }\).