9
\includegraphics[max width=\textwidth, alt={}, center]{ebfdf170-99c6-4785-b9d7-201c3425b4c9-4_556_720_676_715}
The diagram shows the curve with equation \(y = 2 \ln ( x - 1 )\). The point \(P\) has coordinates ( \(0 , p\) ). The region \(R\), shaded in the diagram, is bounded by the curve and the lines \(x = 0 , y = 0\) and \(y = p\). The units on the axes are centimetres. The region \(R\) is rotated completely about the \(\boldsymbol { y }\)-axis to form a solid.
- Show that the volume, \(V \mathrm {~cm} ^ { 3 }\), of the solid is given by
$$V = \pi \left( \mathrm { e } ^ { p } + 4 \mathrm { e } ^ { \frac { 1 } { 2 } p } + p - 5 \right) .$$
- It is given that the point \(P\) is moving in the positive direction along the \(y\)-axis at a constant rate of \(0.2 \mathrm {~cm} \mathrm {~min} ^ { - 1 }\). Find the rate at which the volume of the solid is increasing at the instant when \(p = 4\), giving your answer correct to 2 significant figures.