Edexcel FP1 2013 January — Question 7

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2013
SessionJanuary
TopicConic sections

7. The rectangular hyperbola, \(H\), has cartesian equation \(x y = 25\) The point \(P \left( 5 p , \frac { 5 } { p } \right)\), and the point \(Q \left( 5 q , \frac { 5 } { q } \right)\), where \(p , q \neq 0 , p \neq q\), are points on the rectangular hyperbola \(H\).
  1. Show that the equation of the tangent at point \(P\) is $$p ^ { 2 } y + x = 10 p$$
  2. Write down the equation of the tangent at point \(Q\). The tangents at \(P\) and \(Q\) meet at the point \(N\).
    Given \(p + q \neq 0\),
  3. show that point \(N\) has coordinates \(\left( \frac { 10 p q } { p + q } , \frac { 10 } { p + q } \right)\). The line joining \(N\) to the origin is perpendicular to the line \(P Q\).
  4. Find the value of \(p ^ { 2 } q ^ { 2 }\).