Edexcel FP1 (Further Pure Mathematics 1) 2013 January

Question 1
View details
  1. Show, using the formulae for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\), that
$$\sum _ { r = 1 } ^ { n } 3 ( 2 r - 1 ) ^ { 2 } = n ( 2 n + 1 ) ( 2 n - 1 ) , \text { for all positive integers } n .$$
Question 2
View details
2. $$z = \frac { 50 } { 3 + 4 \mathrm { i } }$$ Find, in the form \(a + \mathrm { i } b\) where \(a , b \in \mathbb { R }\),
  1. \(z\),
  2. \(z ^ { 2 }\). Find
  3. \(| z |\),
  4. \(\arg z ^ { 2 }\), giving your answer in degrees to 1 decimal place.
Question 3
View details
3. $$\mathrm { f } ( x ) = 2 x ^ { \frac { 1 } { 2 } } + x ^ { - \frac { 1 } { 2 } } - 5 , \quad x > 0$$
  1. Find \(\mathrm { f } ^ { \prime } ( x )\). The equation \(\mathrm { f } ( x ) = 0\) has a root \(\alpha\) in the interval [4.5, 5.5].
  2. Using \(x _ { 0 } = 5\) as a first approximation to \(\alpha\), apply the Newton-Raphson procedure once to \(\mathrm { f } ( x )\) to find a second approximation to \(\alpha\), giving your answer to 3 significant figures.
Question 4
View details
4. The transformation \(U\), represented by the \(2 \times 2\) matrix \(\mathbf { P }\), is a rotation through \(90 ^ { \circ }\) anticlockwise about the origin.
  1. Write down the matrix \(\mathbf { P }\). The transformation \(V\), represented by the \(2 \times 2\) matrix \(\mathbf { Q }\), is a reflection in the line \(y = - x\).
  2. Write down the matrix \(\mathbf { Q }\). Given that \(U\) followed by \(V\) is transformation \(T\), which is represented by the matrix \(\mathbf { R }\), (c) express \(\mathbf { R }\) in terms of \(\mathbf { P }\) and \(\mathbf { Q }\),
  3. find the matrix \(\mathbf { R }\),
  4. give a full geometrical description of \(T\) as a single transformation.
Question 5
View details
5. $$f ( x ) = \left( 4 x ^ { 2 } + 9 \right) \left( x ^ { 2 } - 6 x + 34 \right)$$
  1. Find the four roots of \(\mathrm { f } ( x ) = 0\) Give your answers in the form \(x = p + \mathrm { i } q\), where \(p\) and \(q\) are real.
  2. Show these four roots on a single Argand diagram.
Question 6
View details
6. \(\mathbf { X } = \left( \begin{array} { l l } 1 & a
3 & 2 \end{array} \right)\), where \(a\) is a constant.
  1. Find the value of \(a\) for which the matrix \(\mathbf { X }\) is singular. $$\mathbf { Y } = \left( \begin{array} { r r } 1 & - 1
    3 & 2 \end{array} \right)$$
  2. Find \(\mathbf { Y } ^ { - 1 }\). The transformation represented by \(\mathbf { Y }\) maps the point \(A\) onto the point \(B\).
    Given that \(B\) has coordinates ( \(1 - \lambda , 7 \lambda - 2\) ), where \(\lambda\) is a constant,
  3. find, in terms of \(\lambda\), the coordinates of point \(A\).
Question 7
View details
7. The rectangular hyperbola, \(H\), has cartesian equation \(x y = 25\) The point \(P \left( 5 p , \frac { 5 } { p } \right)\), and the point \(Q \left( 5 q , \frac { 5 } { q } \right)\), where \(p , q \neq 0 , p \neq q\), are points on the rectangular hyperbola \(H\).
  1. Show that the equation of the tangent at point \(P\) is $$p ^ { 2 } y + x = 10 p$$
  2. Write down the equation of the tangent at point \(Q\). The tangents at \(P\) and \(Q\) meet at the point \(N\).
    Given \(p + q \neq 0\),
  3. show that point \(N\) has coordinates \(\left( \frac { 10 p q } { p + q } , \frac { 10 } { p + q } \right)\). The line joining \(N\) to the origin is perpendicular to the line \(P Q\).
  4. Find the value of \(p ^ { 2 } q ^ { 2 }\).
Question 8
View details
8. (a) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\), $$\sum _ { r = 1 } ^ { n } r ( r + 3 ) = \frac { 1 } { 3 } n ( n + 1 ) ( n + 5 )$$ (b) A sequence of positive integers is defined by $$\begin{aligned} u _ { 1 } & = 1
u _ { n + 1 } & = u _ { n } + n ( 3 n + 1 ) , \quad n \in \mathbb { Z } ^ { + } \end{aligned}$$ Prove by induction that $$u _ { n } = n ^ { 2 } ( n - 1 ) + 1 , \quad n \in \mathbb { Z } ^ { + }$$
Question 9
View details
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7833e9c0-4a73-4ac6-8a77-51a5489e0614-10_624_716_210_614} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the parabola with equation \(y ^ { 2 } = 36 x\).
The point \(P ( 4,12 )\) lies on the parabola.
  1. Find an equation for the normal to the parabola at \(P\). This normal meets the \(x\)-axis at the point \(N\) and \(S\) is the focus of the parabola, as shown in Figure 1.
  2. Find the area of triangle \(P S N\).