Edexcel FP1 2013 January — Question 6

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2013
SessionJanuary
TopicMatrices

6. \(\mathbf { X } = \left( \begin{array} { l l } 1 & a
3 & 2 \end{array} \right)\), where \(a\) is a constant.
  1. Find the value of \(a\) for which the matrix \(\mathbf { X }\) is singular. $$\mathbf { Y } = \left( \begin{array} { r r } 1 & - 1
    3 & 2 \end{array} \right)$$
  2. Find \(\mathbf { Y } ^ { - 1 }\). The transformation represented by \(\mathbf { Y }\) maps the point \(A\) onto the point \(B\).
    Given that \(B\) has coordinates ( \(1 - \lambda , 7 \lambda - 2\) ), where \(\lambda\) is a constant,
  3. find, in terms of \(\lambda\), the coordinates of point \(A\).