Derive or verify variance formula

Questions requiring proof by integration that Var(X) = (b-a)²/12 or a²/12 for a uniform distribution.

8 questions

Edexcel S2 2013 January Q4
4. The continuous random variable \(X\) is uniformly distributed over the interval \([ - 4,6 ]\).
  1. Write down the mean of \(X\).
  2. Find \(\mathrm { P } ( X \leqslant 2.4 )\)
  3. Find \(\mathrm { P } ( - 3 < X - 5 < 3 )\) The continuous random variable \(Y\) is uniformly distributed over the interval \([ a , 4 a ]\).
  4. Use integration to show that \(\mathrm { E } \left( Y ^ { 2 } \right) = 7 a ^ { 2 }\)
  5. Find \(\operatorname { Var } ( Y )\).
  6. Given that \(\mathrm { P } \left( X < \frac { 8 } { 3 } \right) = \mathrm { P } \left( Y < \frac { 8 } { 3 } \right)\), find the value of \(a\).
Edexcel S2 2013 June Q4
  1. A continuous random variable \(X\) is uniformly distributed over the interval [ \(b , 4 b\) ] where \(b\) is a constant.
    1. Write down \(\mathrm { E } ( X )\).
    2. Use integration to show that \(\operatorname { Var } ( X ) = \frac { 3 b ^ { 2 } } { 4 }\).
    3. Find \(\operatorname { Var } ( 3 - 2 X )\).
    Given that \(b = 1\) find
  2. the cumulative distribution function of \(X , \mathrm {~F} ( x )\), for all values of \(x\),
  3. the median of \(X\).
AQA S2 2008 January Q3
3
  1. The continuous random variable \(T\) follows a rectangular distribution with probability density function given by $$\mathrm { f } ( t ) = \left\{ \begin{array} { l c } k & - a \leqslant t \leqslant b
    0 & \text { otherwise } \end{array} \right.$$
    1. Express \(k\) in terms of \(a\) and \(b\).
    2. Prove, using integration, that \(\mathrm { E } ( T ) = \frac { 1 } { 2 } ( b - a )\).
  2. The error, in minutes, made by a commuter when estimating the journey time by train into London may be modelled by the random variable \(T\) with probability density function $$\mathrm { f } ( t ) = \left\{ \begin{array} { c c } \frac { 1 } { 10 } & - 4 \leqslant t \leqslant 6
    0 & \text { otherwise } \end{array} \right.$$
    1. Write down the value of \(\mathrm { E } ( T )\).
    2. Calculate \(\mathrm { P } ( T < - 3\) or \(T > 3 )\).
AQA S2 2006 June Q5
5
  1. The continuous random variable \(X\) follows a rectangular distribution with probability density function defined by $$f ( x ) = \begin{cases} \frac { 1 } { b } & 0 \leqslant x \leqslant b
    0 & \text { otherwise } \end{cases}$$
    1. Write down \(\mathrm { E } ( X )\).
    2. Prove, using integration, that $$\operatorname { Var } ( X ) = \frac { 1 } { 12 } b ^ { 2 }$$
  2. At an athletics meeting, the error, in seconds, made in recording the time taken to complete the 10000 metres race may be modelled by the random variable \(T\), having the probability density function $$f ( t ) = \left\{ \begin{array} { c c } 5 & - 0.1 \leqslant t \leqslant 0.1
    0 & \text { otherwise } \end{array} \right.$$ Calculate \(\mathrm { P } ( | T | > 0.02 )\).
AQA S2 2014 June Q4
4 A continuous random variable \(X\) has a probability density function defined by $$f ( x ) = \begin{cases} \frac { 1 } { k } & a \leqslant x \leqslant b
0 & \text { otherwise } \end{cases}$$ where \(b > a > 0\).
    1. Prove that \(k = b - a\).
    2. Write down the value of \(\mathrm { E } ( X )\).
    3. Show, by integration, that \(\mathrm { E } \left( X ^ { 2 } \right) = \frac { 1 } { 3 } \left( b ^ { 2 } + a b + a ^ { 2 } \right)\).
    4. Hence derive a simplified formula for \(\operatorname { Var } ( X )\).
  1. Given that \(a = 4\) and \(\operatorname { Var } ( X ) = 3\), find the numerical value of \(\mathrm { E } ( X )\).
    \includegraphics[max width=\textwidth, alt={}]{34517557-011e-4956-be7d-b26fe5e64d0a-08_1347_1707_1356_153}
Edexcel S2 Q5
5. The random variable \(X\) has a continuous uniform distribution on the interval \(a \leq X \leq 3 a\).
  1. Without assuming any standard results, prove that \(\mu\), the mean value of \(X\), is equal to \(2 a\) and derive an expression for \(\sigma ^ { 2 }\), the variance of \(X\), in terms of \(a\).
  2. Find the probability that \(| X - \mu | < \sigma\) and compare this with the same probability when \(x\) is modelled by a Normal distribution with the same mean and variance. \section*{STATISTICS 2 (A) TEST PAPER 8 Page 2}
Edexcel S2 Q7
7. The random variable \(X\) follows a continuous uniform distribution over the interval [2,11].
  1. Write down the mean of \(X\).
  2. Find \(\mathrm { P } ( X \geq 8.6 )\).
  3. Find \(\mathrm { P } ( | X - 5 | < 2 )\). The random variable \(Y\) follows a continuous uniform distribution over the interval \([ a , b ]\).
  4. Show by integration that $$\mathrm { E } \left( Y ^ { 2 } \right) = \frac { 1 } { 3 } \left( b ^ { 2 } + a b + a ^ { 2 } \right)$$
  5. Hence, prove that $$\operatorname { Var } ( Y ) = \frac { 1 } { 12 } ( b - a ) ^ { 2 }$$ You may assume that \(\mathrm { E } ( Y ) = \frac { 1 } { 2 } ( a + b )\).
AQA Further Paper 3 Statistics Specimen Q3
4 marks
3 The continuous random variable \(R\) follows a rectangular distribution with probability density function given by $$f ( r ) = \begin{cases} k & - a \leq r \leq b
0 & \text { otherwise } \end{cases}$$ Prove, using integration, that \(\mathrm { E } ( R ) = \frac { 1 } { 2 } ( b - a )\)
[0pt] [4 marks]