AQA S2 2014 June — Question 4

Exam BoardAQA
ModuleS2 (Statistics 2)
Year2014
SessionJune
TopicContinuous Uniform Random Variables
TypeDerive or verify variance formula

4 A continuous random variable \(X\) has a probability density function defined by $$f ( x ) = \begin{cases} \frac { 1 } { k } & a \leqslant x \leqslant b
0 & \text { otherwise } \end{cases}$$ where \(b > a > 0\).
    1. Prove that \(k = b - a\).
    2. Write down the value of \(\mathrm { E } ( X )\).
    3. Show, by integration, that \(\mathrm { E } \left( X ^ { 2 } \right) = \frac { 1 } { 3 } \left( b ^ { 2 } + a b + a ^ { 2 } \right)\).
    4. Hence derive a simplified formula for \(\operatorname { Var } ( X )\).
  1. Given that \(a = 4\) and \(\operatorname { Var } ( X ) = 3\), find the numerical value of \(\mathrm { E } ( X )\).
    \includegraphics[max width=\textwidth, alt={}]{34517557-011e-4956-be7d-b26fe5e64d0a-08_1347_1707_1356_153}