| Exam Board | AQA |
| Module | Further Paper 3 Statistics (Further Paper 3 Statistics) |
| Session | Specimen |
| Marks | 4 |
| Topic | Continuous Uniform Random Variables |
| Type | Derive or verify variance formula |
3 The continuous random variable \(R\) follows a rectangular distribution with probability density function given by
$$f ( r ) = \begin{cases} k & - a \leq r \leq b
0 & \text { otherwise } \end{cases}$$
Prove, using integration, that \(\mathrm { E } ( R ) = \frac { 1 } { 2 } ( b - a )\)
[0pt]
[4 marks]