AQA S2 2008 January — Question 3

Exam BoardAQA
ModuleS2 (Statistics 2)
Year2008
SessionJanuary
TopicContinuous Uniform Random Variables
TypeDerive or verify variance formula

3
  1. The continuous random variable \(T\) follows a rectangular distribution with probability density function given by $$\mathrm { f } ( t ) = \left\{ \begin{array} { l c } k & - a \leqslant t \leqslant b
    0 & \text { otherwise } \end{array} \right.$$
    1. Express \(k\) in terms of \(a\) and \(b\).
    2. Prove, using integration, that \(\mathrm { E } ( T ) = \frac { 1 } { 2 } ( b - a )\).
  2. The error, in minutes, made by a commuter when estimating the journey time by train into London may be modelled by the random variable \(T\) with probability density function $$\mathrm { f } ( t ) = \left\{ \begin{array} { c c } \frac { 1 } { 10 } & - 4 \leqslant t \leqslant 6
    0 & \text { otherwise } \end{array} \right.$$
    1. Write down the value of \(\mathrm { E } ( T )\).
    2. Calculate \(\mathrm { P } ( T < - 3\) or \(T > 3 )\).