Edexcel S2 — Question 7

Exam BoardEdexcel
ModuleS2 (Statistics 2)
TopicContinuous Uniform Random Variables
TypeDerive or verify variance formula

7. The random variable \(X\) follows a continuous uniform distribution over the interval [2,11].
  1. Write down the mean of \(X\).
  2. Find \(\mathrm { P } ( X \geq 8.6 )\).
  3. Find \(\mathrm { P } ( | X - 5 | < 2 )\). The random variable \(Y\) follows a continuous uniform distribution over the interval \([ a , b ]\).
  4. Show by integration that $$\mathrm { E } \left( Y ^ { 2 } \right) = \frac { 1 } { 3 } \left( b ^ { 2 } + a b + a ^ { 2 } \right)$$
  5. Hence, prove that $$\operatorname { Var } ( Y ) = \frac { 1 } { 12 } ( b - a ) ^ { 2 }$$ You may assume that \(\mathrm { E } ( Y ) = \frac { 1 } { 2 } ( a + b )\).