Questions providing a partial probability distribution with two unknown constants and asking to find them using the constraint that probabilities sum to 1 and a given expectation value.
41 questions
| \(x\) | 1 | 3 | 5 | 7 | 9 |
| \(\mathrm { P } ( X = x )\) | 0.2 | \(p\) | 0.2 | \(q\) | 0.15 |
| \(x\) | - 1 | 0 | 1 | 2 | 3 |
| \(\mathrm { P } ( X = x )\) | \(p\) | \(q\) | 0.2 | 0.15 | 0.15 |
| \(x\) | 0 | 1 | 2 | 3 |
| \(\mathrm { P } ( X = x )\) | \(3 a\) | \(2 a\) | \(b\) |
| \(x\) | 1 | 2 | 3 | 4 | 5 | 6 |
| \(\mathrm { P } ( X = x )\) | \(a\) | \(a\) | \(a\) | \(b\) | \(b\) | 0.3 |
| \(y\) | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm {~F} ( y )\) | \(\frac { 1 } { 10 }\) | \(\frac { 2 } { 10 }\) | \(3 k\) | \(4 k\) | \(5 k\) |
| \(x\) | - 2 | - 1 | \(\frac { 1 } { 2 }\) | \(\frac { 3 } { 2 }\) | 2 |
| \(\mathrm { P } ( X = x )\) | \(p\) | \(q\) | 0.2 | 0.3 | \(p\) |
| \(x\) | - 2 | - 1 | 0 | 1 | 2 |
| \(\mathrm { P } ( X = x )\) | \(\alpha\) | 0.2 | 0.1 | 0.2 | \(\beta\) |
| \(x\) | 4 | 5 | 6 | 7 | 8 | 9 |
| \(\mathrm { P } ( X = x )\) | \(p\) | 0.1 | \(q\) | \(q\) | 0.3 | 0.2 |
| \(x\) | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm { P } ( X = x )\) | \(a\) | \(b\) | \(\frac { 1 } { 4 }\) | \(2 a\) | \(\frac { 1 } { 8 }\) |
| \(\boldsymbol { x }\) | 2 or fewer | 3 | 4 | 5 | 6 | 7 | 8 or more |
| \(\mathbf { P } ( \boldsymbol { X } = \boldsymbol { x } )\) | 0 | 0.1 | 0.2 | \(a\) | 0.3 | \(b\) | 0 |
| \(r\) | 0 | 1 | 2 | 3 | 4 |
| \(\mathrm { P } ( X = r )\) | \(a\) | \(b\) | 0.24 | 0.32 | \(b ^ { 2 }\) |
| \(n\) | 0 | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm { P } ( N = n )\) | \(a\) | 0.2 | 0.05 | 0.25 | \(b\) | \(c\) |
| \(n\) | 0 | 1 | 2 | 3 | 4 | 5 |
| \(\mathrm { P } ( N = n )\) | \(a\) | 0.2 | 0.05 | 0.25 | \(b\) | \(c\) |
| \(Y\) | 0 | 1 | 2 | 3 | 4 |
| \(\mathrm { P } ( Y = y )\) | \(a\) | \(b\) | \(c\) | 0.1 | 0.15 |
| Score, \(N\) | 1 | 2 | 3 | 4 | 5 |
| Probability | 0.3 | 0.2 | 0.2 | \(x\) | \(y\) |
| Score | 0 | 1 | 2 | 3 |
| Probability | \(a\) | \(b\) | \(b\) | \(b\) |