Trapezium rule estimation

A question is this type if and only if it asks to use the trapezium rule to estimate an area or integral value, typically requiring completion of a table and/or calculation with given ordinates.

52 questions · Moderate -0.7

Sort by: Default | Easiest first | Hardest first
OCR MEI C4 Q5
6 marks Moderate -0.8
5
  1. Use the trapezium rule with four strips to estimate \(\int _ { - 2 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { x } } \mathrm {~d} x\), showing your working. Fig. 1 shows a sketch of \(y = \sqrt { 1 + \mathrm { e } ^ { x } }\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{ce44db53-2ec8-497b-a1d5-a8adf85e3929-5_533_1074_441_565} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure}
  2. Suppose that the trapezium rule is used with more strips than in part (i) to estimate \(\int _ { - 2 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { x } } \mathrm {~d} x\). State, with a reason but no further calculation, whether this would give a larger or smaller estimate.
    [0pt] [2]
Edexcel AEA 2023 June Q4
16 marks Challenging +1.2
4.(a)Use the trapezium rule with 4 strips to find an approximate value for $$\int _ { 0 } ^ { 1 } 16 ^ { x } d x$$ (b)Use the trapezium rule with \(n\) strips to write down an expression that would give an approximate value for $$\int _ { 0 } ^ { 1 } 16 ^ { x } d x$$ (c)Hence show that $$\int _ { 0 } ^ { 1 } 16 ^ { x } \mathrm {~d} x = \lim _ { n \rightarrow \infty } \left( \frac { 1 } { n } \left( 1 + 16 ^ { \frac { 1 } { n } } + \ldots + 16 ^ { \frac { n - 1 } { n } } \right) \right)$$ (d)Use integration to determine the exact value of $$\int _ { 0 } ^ { 1 } 16 ^ { x } d x$$ Given that the limit exists,
(e)use part(c)and the answer to part(d)to determine the exact value of $$\lim _ { x \rightarrow 0 } \frac { 16 ^ { x } - 1 } { x }$$
OCR C2 2010 June Q2
5 marks Moderate -0.8
2
  1. Use the trapezium rule, with 3 strips each of width 3 , to estimate the area of the region bounded by the curve \(y = \sqrt [ 3 ] { 7 + x }\), the \(x\)-axis, and the lines \(x = 1\) and \(x = 10\). Give your answer correct to 3 significant figures.
  2. Explain how the trapezium rule could be used to obtain a more accurate estimate of the area.
OCR C2 2013 June Q1
4 marks Easy -1.2
1 Use the trapezium rule, with 3 strips each of width 2 , to estimate the value of $$\int _ { 5 } ^ { 11 } \frac { 8 } { x } \mathrm {~d} x .$$
OCR C2 2015 June Q2
5 marks Moderate -0.8
2
  1. Use the trapezium rule, with 4 strips each of width 1.5, to estimate the value of $$\int _ { 4 } ^ { 10 } \sqrt { 2 x - 1 } \mathrm {~d} x ,$$ giving your answer correct to 3 significant figures.
  2. Explain how the trapezium rule could be used to obtain a more accurate estimate.
OCR MEI C2 2009 January Q2
4 marks Easy -1.2
2 Fig. 2 shows the coordinates at certain points on a curve. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{838d6b15-69a9-4e67-bc36-5bf60254a767-2_645_1146_589_497} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} Use the trapezium rule with 6 strips to calculate an estimate of the area of the region bounded by this curve and the axes.
OCR MEI C2 2013 June Q7
4 marks Easy -1.2
7 Fig. 7 shows a curve and the coordinates of some points on it. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ee79022b-b9a6-4076-8db7-67b9788ac28a-4_631_1031_315_495} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure} Use the trapezium rule with 6 strips to estimate the area of the region bounded by the curve and the positive \(x\) - and \(y\)-axes.
OCR MEI C4 2011 January Q1
6 marks Moderate -0.8
1
  1. Use the trapezium rule with four strips to estimate \(\int _ { - 2 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { x } } \mathrm {~d} x\), showing your working. Fig. 1 shows a sketch of \(y = \sqrt { 1 + \mathrm { e } ^ { x } }\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{f657e167-e6f8-4df2-901b-067c32835877-02_535_1074_571_532} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure}
  2. Suppose that the trapezium rule is used with more strips than in part (i) to estimate \(\int _ { - 2 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { x } } \mathrm {~d} x\). State, with a reason but no further calculation, whether this would give a larger or smaller estimate.
OCR MEI C4 2014 June Q3
5 marks Moderate -0.8
3 Fig. 3 shows the curve \(y = x ^ { 3 } + \sqrt { ( \sin x ) }\) for \(0 \leqslant x \leqslant \frac { \pi } { 4 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{413a0c52-b506-46d4-b1e4-fe13466abcc1-02_577_538_744_758} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Use the trapezium rule with 4 strips to estimate the area of the region bounded by the curve, the \(x\)-axis and the line \(x = \frac { \pi } { 4 }\), giving your answer to 3 decimal places.
  2. Suppose the number of strips in the trapezium rule is increased. Without doing further calculations, state, with a reason, whether the area estimate increases, decreases, or it is not possible to say.
Edexcel Paper 1 2023 June Q5
6 marks Moderate -0.8
  1. A continuous curve has equation \(y = \mathrm { f } ( x )\).
The table shows corresponding values of \(x\) and \(y\) for this curve, where \(a\) and \(b\) are constants.
\(x\)33.23.43.63.84
\(y\)\(a\)16.8\(b\)20.218.713.5
The trapezium rule is used, with all the \(y\) values in the table, to find an approximate area under the curve between \(x = 3\) and \(x = 4\) Given that this area is 17.59
  1. show that \(a + 2 b = 51\) Given also that the sum of all the \(y\) values in the table is 97.2
  2. find the value of \(a\) and the value of \(b\)
Edexcel Paper 1 Specimen Q1
6 marks Moderate -0.8
1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{96e004d9-c6b6-474b-9b67-06e1771c609e-02_659_853_349_607} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \frac { x } { 1 + \sqrt { x } } , x \geqslant 0\) The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the line with equation \(x = 1\), the \(x\)-axis and the line with equation \(x = 3\) The table below shows corresponding values of \(x\) and \(y\) for \(y = \frac { x } { 1 + \sqrt { } x }\)
\(x\)11.522.53
\(y\)0.50.67420.82840.96861.0981
  1. Use the trapezium rule, with all the values of \(y\) in the table, to find an estimate for the area of \(R\), giving your answer to 3 decimal places.
  2. Explain how the trapezium rule can be used to give a better approximation for the area of \(R\).
  3. Giving your answer to 3 decimal places in each case, use your answer to part (a) to deduce an estimate for
    1. \(\int _ { 1 } ^ { 3 } \frac { 5 x } { 1 + \sqrt { x } } \mathrm {~d} x\)
    2. \(\int _ { 1 } ^ { 3 } \left( 6 + \frac { x } { 1 + \sqrt { x } } \right) \mathrm { d } x\)
OCR MEI Paper 1 Specimen Q6
4 marks Moderate -0.8
6 Fig. 6 shows a partially completed spreadsheet.
This spreadsheet uses the trapezium rule with four strips to estimate \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sqrt { 1 + \sin x } \mathrm {~d} x\). \begin{table}[h]
ABCDE
1\(x\)\(\sin x\)\(y\)
200.00000.00001.00000.5000
30.1250.39270.38271.17591.1759
40.250.78540.70711.30661.3066
50.3751.17810.92391.38701.3870
60.51.57081.00001.41420.7071
75.0766
8
\captionsetup{labelformat=empty} \caption{Fig. 6}
\end{table}
  1. Show how the value in cell B3 is calculated.
  2. Show how the values in cells D2 to D6 are used to calculate the value in cell E7.
  3. Complete the calculation to estimate \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sqrt { 1 + \sin x } \mathrm {~d} x\). Give your answer to 3 significant figures.
AQA C2 2008 January Q4
4 marks Moderate -0.8
4 Use the trapezium rule with four ordinates (three strips) to find an approximate value for $$\int _ { 0 } ^ { 3 } \sqrt { x ^ { 2 } + 3 } d x$$ giving your answer to three decimal places.
AQA C2 2009 January Q2
5 marks Moderate -0.3
2
  1. Use the trapezium rule with four ordinates (three strips) to find an approximate value for $$\int _ { 1.5 } ^ { 6 } x ^ { 2 } \sqrt { x ^ { 2 } - 1 } \mathrm {~d} x$$ giving your answer to three significant figures.
  2. State how you could obtain a better approximation to the value of the integral using the trapezium rule.
    (1 mark)
AQA C2 2011 January Q4
6 marks Moderate -0.8
4
  1. Use the trapezium rule with four ordinates (three strips) to find an approximate value for \(\int _ { 0 } ^ { 1.5 } \sqrt { 27 x ^ { 3 } + 4 } \mathrm {~d} x\), giving your answer to three significant figures.
  2. The curve with equation \(y = \sqrt { 27 x ^ { 3 } + 4 }\) is stretched parallel to the \(x\)-axis with scale factor 3 to give the curve with equation \(y = \mathrm { g } ( x )\). Write down an expression for \(\mathrm { g } ( x )\).
    (2 marks)
    \includegraphics[max width=\textwidth, alt={}]{1c06ba04-575c-4eb8-b4aa-0a7510838cd2-05_1988_1717_719_150}
AQA C2 2012 January Q2
5 marks Moderate -0.8
2
  1. Use the trapezium rule with five ordinates (four strips) to find an approximate value for $$\int _ { 0 } ^ { 4 } \frac { 2 ^ { x } } { x + 1 } \mathrm {~d} x$$ giving your answer to three significant figures.
  2. State how you could obtain a better approximation to the value of the integral using the trapezium rule.
AQA C2 2005 June Q4
19 marks Moderate -0.3
4 The diagram shows a curve \(C\) with equation \(y = \sqrt { x }\). The point \(O\) is the origin \(( 0,0 )\). \includegraphics[max width=\textwidth, alt={}, center]{37627fc4-a90b-4f3b-9b10-0a9e200f8485-3_488_1136_1009_443} The region bounded by the curve \(C\), the \(x\)-axis and the vertical lines \(x = 1\) and \(x = 4\) is shown shaded in the diagram.
    1. Write \(\sqrt { x }\) in the form \(x ^ { p }\), where \(p\) is a constant.
    2. Find \(\int \sqrt { x } \mathrm {~d} x\).
    3. Hence find the area of the shaded region.
  1. The point on \(C\) for which \(x = 4\) is \(P\). The tangent to \(C\) at the point \(P\) intersects the \(x\)-axis and the \(y\)-axis at the points \(A\) and \(B\) respectively.
    1. Find an equation for the tangent to the curve \(C\) at the point \(P\).
    2. Find the area of the triangle \(A O B\).
  2. Describe the single geometrical transformation by which the curve with equation \(y = \sqrt { x - 1 }\) can be obtained from the curve \(C\).
  3. Use the trapezium rule with four ordinates (three strips) to find an approximation for \(\int _ { 1 } ^ { 4 } \sqrt { x - 1 } \mathrm {~d} x\), giving your answer to three significant figures.
AQA C2 2016 June Q5
8 marks Moderate -0.8
5
  1. Use the trapezium rule with four ordinates (three strips) to find an approximate value for \(\int _ { 2 } ^ { 11 } \sqrt { x ^ { 2 } + 9 } \mathrm {~d} x\). Give your answer to one decimal place.
  2. Describe the geometrical transformation that maps the graph of \(y = \sqrt { x ^ { 2 } + 9 }\) onto the graph of :
    1. \(y = 5 + \sqrt { x ^ { 2 } + 9 }\);
    2. \(y = 3 \sqrt { x ^ { 2 } + 1 }\).
Edexcel C2 Q2
5 marks Easy -1.2
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c7c8cf84-06ac-4059-b8f0-d68b6d1d8dcc-2_613_911_692_376} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with equation \(y = 2 ^ { x }\).
Use the trapezium rule with four intervals of equal width to estimate the area of the shaded region bounded by the curve, the \(x\)-axis and the lines \(x = - 2\) and \(x = 2\).
Edexcel C2 Q6
10 marks Moderate -0.8
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3e44996a-4635-46f6-bd45-7799a8c49463-3_589_894_248_397} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with equation \(y = 4 x + \frac { 1 } { x } , x > 0\).
  1. Find the coordinates of the minimum point of the curve. The shaded region \(R\) is bounded by the curve, the \(x\)-axis and the lines \(x = 1\) and \(x = 4\).
  2. Use the trapezium rule with three intervals of equal width to estimate the area of \(R\).
Edexcel C2 Q2
4 marks Easy -1.2
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{05006f1f-ebf0-4d70-9dbb-68221c09043e-2_510_842_534_513} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with equation \(y = \sqrt { 4 x - 1 }\). Use the trapezium rule with five equally-spaced ordinates to estimate the area of the shaded region bounded by the curve, the \(x\)-axis and the lines \(x = 1\) and \(x = 3\).
AQA C3 2007 January Q1
4 marks Moderate -0.8
1 Use the mid-ordinate rule with four strips of equal width to find an estimate for \(\int _ { 1 } ^ { 5 } \frac { 1 } { 1 + \ln x } \mathrm {~d} x\), giving your answer to three significant figures.
(4 marks)
AQA C3 2012 June Q1
4 marks Moderate -0.3
1 Use the mid-ordinate rule with four strips to find an estimate for \(\int _ { 0.4 } ^ { 1.2 } \cot \left( x ^ { 2 } \right) \mathrm { d } x\), giving your answer to three decimal places.
CAIE P2 2024 June Q6
9 marks Moderate -0.3
  1. Use the trapezium rule with two intervals to find an approximation to the area of the shaded region. Give your answer correct to 2 significant figures.
  2. The shaded region is rotated completely about the \(x\)-axis. Find the exact volume of the solid produced. \includegraphics[max width=\textwidth, alt={}, center]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-11_65_1548_379_349} \includegraphics[max width=\textwidth, alt={}]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-11_67_1566_466_328} ........................................................................................................................................ \includegraphics[max width=\textwidth, alt={}, center]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-11_70_1570_646_324} \includegraphics[max width=\textwidth, alt={}, center]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-11_72_1570_735_324} \includegraphics[max width=\textwidth, alt={}, center]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-11_72_1570_826_324} \includegraphics[max width=\textwidth, alt={}]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-11_74_1570_916_324} ........................................................................................................................................ . \includegraphics[max width=\textwidth, alt={}, center]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-11_72_1572_1096_322} \includegraphics[max width=\textwidth, alt={}, center]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-11_70_1570_1187_324} \includegraphics[max width=\textwidth, alt={}, center]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-11_67_1570_1279_324} \includegraphics[max width=\textwidth, alt={}, center]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-11_70_1570_1367_324} \includegraphics[max width=\textwidth, alt={}]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-11_62_1570_1462_324} .......................................................................................................................................... ......................................................................................................................................... . \includegraphics[max width=\textwidth, alt={}]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-11_72_1570_1724_324} .......................................................................................................................................... . \includegraphics[max width=\textwidth, alt={}, center]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-11_71_1570_1905_324} \includegraphics[max width=\textwidth, alt={}, center]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-11_74_1570_1994_324} \includegraphics[max width=\textwidth, alt={}]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-11_76_1570_2083_324} ......................................................................................................................................... . ........................................................................................................................................ ......................................................................................................................................... ........................................................................................................................................ . ......................................................................................................................................... . ........................................................................................................................................
AQA C2 2007 January Q2
4 marks Moderate -0.8
2 Use the trapezium rule with four ordinates (three strips) to find an approximate value for $$\int _ { 0 } ^ { 3 } \sqrt { 2 ^ { x } } \mathrm {~d} x$$ giving your answer to three decimal places.